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1. What is the problem?
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Feature Models and Conjunctive Normal Forms

We can convert feature models to propositional formulas!

(x86 ∧ ¬arm64) ∨ (¬x86 ∧ arm64)...
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Deterministic Decomposable Negation Normal Form (d-DNNF)

Any propositional formula which is:

deterministic
Exclusive or-operators F = A ∨ B
Never simultaneous A = 1 and B = 1
If-then-else
|F | = |A|+ |B|

Decomposable
And-operands F = A ∧ B never share variables
|F | = |A| ∗ |B|

Negation Normal Form

∨

a ∧ b c ∧ b

Not a d-DNNF ✗

d-DNNF formulas allow linear-time model counting
d-DNNF compilation: CNF → d-DNNF
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Feature-Model Slicing / Projection of Formulas

Feature Model
Hardware

arm64

x86

VideoEncoding

Software

Windows

Linux

Packages*

constraints

Problem
How many hardware configurations?

Transitive Constraints
VideoEncoding =⇒ Windows

Sliced: VideoEncoding =⇒ x86

Windows =⇒ x86
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Feature-Model Slicing / Projection of Formulas [Krieter et al. SPLC16]

Resolve all clauses with v with all clauses with ¬v

Resolving Two Clauses

(¬VideoEncoding ∨Windows), (x86 ∨ ¬Windows) → (¬VideoEncoding ∨ x86)

(a1 ∨ a2 ∨ ... ∨ v), (b1 ∨ b2 ∨ ... ∨ ¬v) → (a1 ∨ a2 ∨ ... ∨ b1 ∨ b2 ∨ ...)

Resolving Many Clauses

(a11 ∨ a12 ∨ ... ∨ v)

(a21 ∨ a22 ∨ ... ∨ v)

...

(an1 ∨ an2 ∨ ... ∨ v)

(b11 ∨ b12 ∨ ... ∨ ¬v)

(b21 ∨ b22 ∨ ... ∨ ¬v)
...

(bm1 ∨ bm2 ∨ ... ∨ ¬v)

Exponential clause count increase for multiple variables.
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Scalability Issues with State-of-the-Art Reasoning
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Scalability Issues with State-of-the-Art Reasoning
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2. Why should you care about this thesis?
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Why should you care about this thesis?

Standard Evaluation Criteria

1. Novelty

2. Significance

3. Soundness

4. Verifyability

5. Clarity

Let me try to convince you . . .
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Is it novel? Projection + Compilation = Projected Compilation
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Is it novel? Projection + Compilation = Projected Compilation

Projected d-DNNF Compilation
Projected variables = a, b, d
Sliced variables = c, e

(a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬d) ∧ (c ∨ e)

(b ∨ c) ∧ (c ∨ e)

⊤

b ¬b

(b ∨ ¬d) ∧ (c ∨ e)

(b ∨ ¬d)

¬d⊤

a ¬a
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Is it significant? Experimental Design

Solvers
• pD4: Our approach

• slice: Slicing followed by d-DNNF compilation

• gpmc: 1st place projected model counter in MC2022

• D4-pmc: 2nd place projected model counter in MC2022

• arjun: 3rd place projected model counter in MC2022

Data
• MC2022: Private+public instances from the MC2022 (many unknown sources...)

• Generated Projection: Adding randomly selected projected variables to real feature models

• Industrial Projection: Real feature model slicing problems

Questions
Compare runtime performance (and d-DNNF size)
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Is it significant? Projected Model Counting Competition 2022
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Is it sound? Random Projections on Feature Models
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Is it sound? Real Projections from Automotive Industry
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Is it verifiable?

pD4 on Github Replication Package
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https://github.com/lothran/d4v2
https://github.com/lothran/projected-ddnnf-eval


Is it clear? Projected d-DNNF Compilation for Feature Models

Projected Compilation = Projection + Compilation

projected d-DNNF compilation . . .

• is faster than slicing (our goal)

• slicing Linux feasible if slice small enough

• is faster than projected model counting
(unexpected, due to many optimizations)

• is much faster for multiple queries

• is the first instance of projected compilation
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3. More details wanted?
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Model Counting

Problem
• How many hardware configurations?

• Counting the number of satisfiable assignments of a propositional formula F . Denoted as |F |.

p q F = a ∧ b
1 1 1
1 0 0
0 1 0
0 0 0

#SAT

Counts the number of solutions of a propositional formula.
Worst-case exponential complexity!
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Projected Model Counting

Problem
How many hardware configurations?

Feature-Model
CNF:

(A ∨ B ∨ ¬C) ∧ (¬B ∨ ¬C) . . .
Slice:

(A ∨ B) ∧ (¬B) . . .
#SAT

#SAT

...

d-DNNF
Compilation

Counting Queries:
arm64=true
. . .

Projected
Model

Counting

Projected
d-DNNF

Compilation

Counting Queries:
arm64=true
. . .

arm64=truecan be slow
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Projected Model Counting

Problem
How many hardware configurations with arm64?

Feature-Model
CNF:

(A ∨ B ∨ ¬C) ∧ (¬B ∨ ¬C) . . .
Slice:
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Projected Model Counting

Problem
How many hardware configurations with X ?
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Thomas Thüm Projected d-DNNF Compilation for Feature Models – A Master’s Thesis – 3. More details wanted? 24



Projected Model Counting

Problem
How many hardware configurations with X ?

Feature-Model
CNF:

(A ∨ B ∨ ¬C) ∧ (¬B ∨ ¬C) . . .
Slice:

(A ∨ B) ∧ (¬B) . . .
#SAT

#SAT

...

d-DNNF
Compilation

Counting Queries:
arm64=true
. . .

Projected
Model

Counting

Projected
d-DNNF

Compilation

Counting Queries:
arm64=true
. . .

arm64=truecan be slow
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d-DNNF Compilation

DPLL
(a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬d) ∧ (c ∨ e)

(b ∨ c) ∧ (c ∨ e)

b ∧ c⊤

c ¬c

(b ∨ ¬d) ∧ (c ∨ e)

(c ∨ e)

e⊤

(b ∨ ¬d)

¬d⊤

a ¬a

d-DNNF
ITE(a)

ITE(c)

b ∧ c⊤

∧

ITE(c)

e⊤

ITE(b)

¬d⊤

ITE = If Then Else
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Heuristics

Vanilla DPLL is very slow

Variable Odering

(a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬d) ∧ (c ∨ e)

(b ∨ c) ∧ (c ∨ e)(b ∨ ¬d) ∧ (c ∨ e)

a ¬a
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Heuristics: Dual Hypergraph

c1 c2

c3 c4

c5

c1 c2

c3 c4

c5

Construction
F = (a ∨ b)

c1

∧ (a ∨ ¬c)
c2

∧ (a ∨ ¬d)
c3

∧ (b ∨ ¬c)
c4

∧ (b ∨ ¬d)
c5

Split formula into independent sub-problems of roughly equal size.
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Integration and Optimization in D4 [An Improved Decision-DNNF Compiler, Lagniez et al.]

Preprocessing
New partial resolution heuristic
Integration of existing work

DPLL
Dual weighted hypergraph partitioning
Integration of existing work
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Dual Weighted Hypergraph Partitioning

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

Cut2 Cut1

F = c0 ∧ c1 ∧ ... ∧ c15

Thomas Thüm Projected d-DNNF Compilation for Feature Models – A Master’s Thesis – 3. More details wanted? 29



Dual Weighted Hypergraph Partitioning

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

Cut2 Cut1

F = c0 ∧ c1 ∧ ... ∧ c15
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Partial Resolution

Greedily resolve ”easy” sliced variables until the clause count increases

New Combined Heuristic
Group by:

1. Trivial resolution variables

2. Simpical variables

3. Other variables

Sort by: vp ∗ vn and average clause length

Other variables Simpical Variables Trivial Resolution Variables

SortedSorted
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Thomas Thüm Projected d-DNNF Compilation for Feature Models – A Master’s Thesis – 3. More details wanted? 30



Partial Resolution

Greedily resolve ”easy” sliced variables until the clause count increases

Connectivity
(¬a ∨ b ∨ v), (a ∨ b ∨ ¬v) → (¬a ∨ b ∨ b ∨ c) ≡ ⊤
Simpical Variable 1: neighbors form a clique through clauses

v

a

b c

d

1from GPMC source code

New Combined Heuristic
Group by:

1. Trivial resolution variables

2. Simpical variables

3. Other variables

Sort by: vp ∗ vn and average clause length

Other variables Simpical Variables Trivial Resolution Variables

SortedSorted
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Generated Projection for Feature Models (Table)
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