Technische Universität Braunschweig

How Low Can We Go?
 Minimizing interaction samples for configurable systems

Automatic \Longrightarrow Radio

All errors and outrageous lies are mine, and only mine
co-conspirators:

Dominik Krupke, Ahmad Moradi, Michael Perk, Phillip Keldenich, Gabriel Gehrke, sebastían Krieter, Thomas Thüm, Sándor P. Fekete

Testing configurable systems is critical

三 © \mathbb{N} U World Politics Business Opinion Health Entertainment Style Travel Sports Underscored

Toyota recalls 280,000 vehicles because they may 'creep forward' in neutral

The company will inform the owners of recalled vehicles by late April and update the
software for the transmission, Toyota said.
The recall is one of three in the United States that the company announced
Wednesday.
Toyota said it was recalling another 19,000 vehicles over a software problem that
means "the rearview image may not display within the period of time required by
certain US safety regulations after the driver shifts the vehicle into reverse, increasing
the risk of a crash while backing the vehicle."

The Feature Model (on binary features)

t-wise Interactions

Testing all configurations
is not feasible.

just cover all t-wise interactions
interactions $=$ tuples of literals of size t
e.g. for $t=2$ (CD, Radio) (-CD, Radio) (-CD, -Radio)

(Complete) Pairwise-Interaction sampling Problem

$$
t=2
$$

Features $F=\{1, \ldots, n\}$
Literals
$L=\{-n, \ldots,-1,1, \ldots, n\}$
valid interactions $I \subsetneq L \times L$
coal: Find minimum cardinality
set of configurations that covers I
فwe call this a sample

The set Cover Problem

Inapproximability results [edit]
When n refers to the size of the universe, Lund \& Yannakakis (1994) showed that set covering cannot be approximated in polynomial time to within a factor of $\frac{1}{2} \log _{2} n \approx 0.72 \ln n$, unless NP has quasi-polynomial time algorithms. Feige (1998) improved this lower bound to
$(1-o(1)) \cdot \ln n$ under the same assumptions, which essentially matches the approximation ratio achieved by the greedy algorithm. Raz \& Safra (1997) established a lower bound of $c \cdot \ln n$, where c is a certain constant, under the weaker assumption that $\mathbf{P} \neq \mathbf{N P}$. A similar result with a higher value of c was recently proved by Alon, Moshkovitz \& Safra (2006). Dinur \& Steurer (2013) showed optimal inapproximability by proving that it cannot be approximated to $(1-o(1)) \cdot \ln n$ unless $\mathbf{P}=\mathbf{N P}$.
https://en.wikipedia.org/wiki/set_cover_problem

+Challenge 1:
 Elements NP-hard to identify

+Challenge 2:
 Exponential number of potential covering sets

We can express the problem as a SAT-formula (plus objective) to solve for optimality!

$$
\begin{aligned}
& \min \quad \sum_{i=1}^{k} u_{i} \longleftarrow \text { isth config used } \\
& \forall i=1, \downarrow . k, I \in \mathcal{I}: \quad \overline{u_{i}} \Longrightarrow \overline{y_{I}^{i}} \longleftarrow \quad \begin{array}{l}
\text { Only used configs } \\
\text { can cover something }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \forall i=1, \ldots k, I \in \mathcal{I}: y_{I}^{i} \Longrightarrow \bigwedge x_{\ell}^{i} \longleftarrow \text { Bind ystoxs } \\
& \forall I \in \mathcal{I}: \stackrel{\ell \in I}{\stackrel{k}{k}} \begin{array}{l}
\text { covered by some } \\
\text { config }
\end{array} \\
& \text { interaction } 1 \text { covered } \\
& \text { by isth config }
\end{aligned}
$$

$$
\begin{aligned}
& \min \sum_{i=1}^{k} u_{i} \\
& \begin{array}{l}
\text { we have lex the same } \\
\text { model! same } \\
\text { symmetries!!! }
\end{array} \\
& \forall i=1, \ldots k, \mathcal{D}_{j} \in \mathcal{D}: \quad \bigvee x_{\ell}^{i} \\
& \ell \in \mathcal{D}_{j} \\
& \forall i=1, \ldots k, I \in \mathcal{I}: \quad y_{I}^{i} \Longrightarrow \bigwedge_{\ell \in I} x_{\ell}^{i} \\
& \forall I \in \mathcal{I}: \quad \bigvee^{k} y_{I}^{i} \\
& i=1
\end{aligned}
$$

Why are symmetries so bad?

$$
\begin{array}{ccccc}
x_{1}^{1}:=1 & x_{2}^{1}:=1 & x_{3}^{1}:=0 & x_{4}^{1}:=1 & \cdots \\
x_{1}^{2}:=0 & x_{2}^{2}:=0 & x_{3}^{2}:=0 & x_{4}^{2}:=1 & \cdots \\
x_{1}^{3}:=1 & x_{2}^{3}:=0 & x_{3}^{3}:=1 & x_{4}^{3}:=0 & \cdots \\
x_{1}^{4}:=0 & x_{2}^{4}:=1 & x_{3}^{4}:=0 & x_{4}^{4}:=1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \\
x_{1}^{n}:=1 & x_{2}^{n}:=1 & x_{3}^{n}:=0 & x_{4}^{n}:=0 & \cdots
\end{array}
$$

$$
10!=3628800,15!=1.3076744 e+12,20!=2.432902 e+18
$$

Mutually Exclusive Interactions
cannot appear in same sample
$\left(x_{1}:=1, x_{2}:=1\right.$) cover in first configuration
$\left(x_{1}:=-\frac{1}{-1} 0, x_{2}:=1\right)$ cover in second configuration
$\left(x_{1}:=\frac{1}{1} 1, x_{2}:=0\right)$ cover in third configuration
$x_{1}:=0, x_{2}:=0$ cover in fourth configuration
can we do more?

$$
\begin{aligned}
& \text { Find } \\
& \text { mutual } \\
& \text { inaluy est set of } \\
& \text { interacecluding } \\
& \text { anions! }
\end{aligned}
$$

use a Large Neíghborhood search

$7{ }^{(a)}$ Compatibility Graph

(d) Subgraph of potential extension

Independent Set Problem

(b) Set of mutually excluding interactions

(e) Solution of subgraph

(c) Remove part of set

(f) Combination to larger set
inverse of incompatibility graph

Features:
clauses:

$$
\mathscr{F}=\{1,2,3,4\} \quad \mathscr{D}=\{\{1,2\},\{3,4\}\}
$$

Example!

interactions:

$$
\begin{aligned}
\mathscr{I}=\{ & \{3,4\},\{1,-3\},\{2,-4\},\{1,3\},\{-2,4\},\{-1,4\},\{2,4\},\{1,2\},\{1,-4\},\{-2,-3\},\{-1,-3\}, \\
& \{-2,3\},\{-1,3\},\{3,-4\},\{-3,4\},\{2,-3\},\{1,-2\},\{1,4\},\{2,3\},\{-1,-4\},\{-2,-4\},\{-1,2\}\}
\end{aligned}
$$

initial sample:
(locally optímal)

$$
S=\{\{1.2,3,4\},\{1,-2,3,-4\},\{1,-2,-3,4\},\{-12,3,4\},\{-1.2,2,-4\},\{-1,2,-3,4\}\}
$$

DESTROY: Select random subset...

$$
S^{\prime}=\{\{1,2,-3,4\},\{-1,2,3,4\},\{-1,2,3,-4\}\}
$$

Removal leaves uncovered:

$$
\mathscr{J}^{\prime}=\{\{1,2\},\{2,3\},\{3,4\},\{2,-4\},\{-1,3\},\{-1,-4\}\}
$$

REPAIR: compute optimal sample for it...

$$
S^{\prime \prime}=\{\{1,2,3,4\},\{-1,2,-3,4\}\}
$$

Build better sample:
5 instead of 6 !
$S=\left(S \backslash S^{\prime}\right) \cup S^{\prime \prime}=\{\{1,-2,3,-4\},\{1,-2,-3,4\},\{-1,2,-3,4\},\{1,2,3,4\},\{-1,2,-3,4\}\}$ Repeat!

How good are the lower bounds and solutions?

Lower is better

	SampLNS	
\%	YASA (m=1)	
	YAS	
-	YASA ($\mathrm{m}=5$)	
is	YASA ($\mathrm{m}=10$)	
\#	YASA (15min)	
	ICPL	4
ξ	Chvatal	
\pm	Incling	[46]
	IPOF-FT	
	S-IPO	[24
	ACTS-IP	

How efficient is the algorithm?

our algorithm needs an initial solution...

... how important is its quality?

...just use the fastest initial solution!

Feature Model	$\|\mathcal{F}\|$	$\begin{array}{rr} & \text { Baseline } \\ \|\mathcal{D}\| & \text { min } \end{array}$		SampLNS UB mean (min)	SampLNS LB mean (max)	SampLNS			
				Savings		UB/LB	Time to Bounds		
calculate	9	15	9		5 (5)	5 (5)	44\% (44\%)	1.00 (1.00)	$<1 \mathrm{~s}(1 \mathrm{~s})$
lcm	9	16	8	6 (6)	6 (6)	25% (25\%)	1.00 (1.00)	$<1 \mathrm{~s}(<1 \mathrm{~s})$	
email	10	17	6	6 (6)	6 (6)	0% (0\%)	1.00 (1.00)	$<1 \mathrm{~s}(<1 \mathrm{~s})$	
ChatClient	14	20	7	7 (7)	7 (7)	0 \% (0\%)	1.00 (1.00)	$1 \mathrm{~s}(2 \mathrm{~s})$	
toybox_2006-10-31...	16	13	9	8 (8)	8 (8)	11% (11\%)	1.00 (1.00)	1 s (1s)	
car	16	33	6	5 (5)	5 (5)	17% (17\%)	1.00 (1.00)	$<1 \mathrm{~s}(<1 \mathrm{~s})$	
FeatureIDE	19	27	9	8 (8)	8 (8)	11% (11\%)	1.00 (1.00)	271 s (128s)	
FameDB	22	40	8	8 (8)	8 (8)	0% (0\%)	1.00 (1.00)	$1 \mathrm{~s}(1 \mathrm{~s})$	
APL	23	35	9	7 (7)	7 (7)	22 \% (22\%)	1.00 (1.00)	$1 \mathrm{~s}(1 \mathrm{~s})$	
SafeBali	24	45	11	11 (11)	11 (11)	0% (0\%)	1.00 (1.00)	$<1 \mathrm{~s}(<1 \mathrm{~s})$	
TightVNC	28	39	11	8 (8)	8 (8)	27% (27\%)	1.00 (1.00)	$16 \mathrm{~s}(21 \mathrm{~s})$	
APL-Model	28	40	10	8 (8)	8 (8)	20% (20\%)	1.00 (1.00)	14 s (15 s)	
gpl	38	99	17	16 (16)	16 (16)	5.9% (5.9\%)	1.00 (1.00)	$3 \mathrm{~s}(3 \mathrm{~s})$	
SortingLine	39	77	12	9 (9)	9 (9)	25% (25\%)	1.00 (1.00)	$8 \mathrm{~s}(9 \mathrm{~s})$	
dell	46	244	32	31 (31)	31 (31)	3.1 \% (3.1\%)	1.00 (1.00)	29 s (45s)	
PPU	52	109	12	12 (12)	12 (12)	$0 \% ~(0 \%)$	1.00 (1.00)	$2 \mathrm{~s}(2 \mathrm{~s})$	
berkeleyDB1	76	147	19	15 (15)	15 (15)	21% (21\%)	1.00 (1.00)	77 s (137s)	
axTLS	96	183	16	11 (11)	10 (10)	31% (31\%)	1.10 (1.10)	20s (20s)	
Violet	101	203	23	17 (17)	16 (16)	26% (26\%)	1.06 (1.06)	476 s (656 s)	
berkeleyDB2	119	346	20	12 (12)	12 (12)	40% (40\%)	1.00 (1.00)	$162 \mathrm{~s}(282 \mathrm{~s})$	
soletta_2015-06-2...	129	192	30	24 (24)	24 (24)	20% (20\%)	1.00 (1.00)	$21 \mathrm{~s}(60 \mathrm{~s})$	
BattleofTanks	144	769	451	320 (295)	256 (256)	29% (35\%)	1.25 (1.15)	$887 \mathrm{~s}(160 \mathrm{~min})$	
BankingSoftware	176	280	40	29 (29)	29 (29)	28% (28\%)	1.00 (1.00)	306 s (429 s)	
fiasco_2017-09-26...	230	1,181	234	225 (225)	225 (225)	3.8% (3.9\%)	1.00 (1.00)	$382 \mathrm{~s}(579 \mathrm{~s})$	
fiasco_2020-12-01...	258	1,542	209	196 (196)	196 (196)	6.1 \% (6.2\%)	1.00 (1.00)	$438 \mathrm{~s}(478 \mathrm{~s})$	
uclibc_2008-06-05...	263	1,699	505	505 (505)	505 (505)	0% (0\%)	1.00 (1.00)	104 s (67s)	
uclibc_2020-12-24...	272	1,670	365	365 (365)	365 (365)	0% (0\%)	1.00 (1.00)	108 s (112s)	
E-Shop	326	499	19	12 (12)	9 (10)	37% (37\%)	1.30 (1.20)	268 s (64 min)	
toybox_2020-12-06...	334	92	18	13 (13)	7 (8)	28% (28\%)	1.71 (1.62)	532 s (35 min)	
DMIE	366	627	26	16 (16)	16 (16)	38% (38\%)	1.00 (1.00)	104 s (135 s)	
soletta_2017-03-0...	458	1,862	56	37 (37)	31 (37)	34% (34\%)	1.16 (1.00)	387 s (24 min)	
busybox_2007-01-2...	540	429	34	21 (21)	21 (21)	38% (38\%)	1.00 (1.00)	164 s (237s)	
fs_2017-05-22	557	4,992	398	396 (396)	396 (396)	0.5% (0.5\%)	1.00 (1.00)	478 s (575 s)	
WaterlooGenerated	580	879	144	82 (82)	82 (82)	43% (43\%)	1.00 (1.00)	223 s (310s)	
financial_services	771	7,238	4,384	4,368 (4,340)	4,274 (4,336)	0.36% (1\%)	1.02 (1.00)	862 s (102 min)	
busybox-1_18_0	854	1,164	26	16 (16)	11 (13)	35% (38\%)	1.53 (1.23)	$233 \mathrm{~s}(59 \mathrm{~min})$	
busybox-1_29_2	1,018	997	36	22 (22)	17 (21)	38% (39\%)	1.26 (1.05)	465 s (60 min)	
busybox_2020-12-1...	1,050	996	33	21 (20)	17 (19)	36% (39\%)	1.19 (1.05)	407 s (17 min)	
am31_sim	1,178	2,747	60	36 (33)	26 (29)	39% (45\%)	1.36 (1.14)	699 s (77 min)	
EMBToolkit	1,179	5,414	1,881	1,879 (1,872)	1,821 (1,872)	0.1% (0.48\%)	1.03 (1.00)	$863 \mathrm{~s}(47 \mathrm{~min})$	
atlas_mips 32 _4kc	1,229	2,875	66	38 (36)	31 (33)	41% (45\%)	1.22 (1.09)	$548 \mathrm{~s}(50 \mathrm{~min})$	
eCos-3-0_i386pc	1,245	3,723	64	43 (39)	31 (36)	32% (39\%)	1.38 (1.08)	$621 \mathrm{~s}(146 \mathrm{~min})$	
integrator_arm7	1,272	2,980	66	38 (36)	30 (33)	41% (45\%)	1.28 (1.09)	$681 \mathrm{~s}(82 \mathrm{~min})$	
XSEngine	1,273	2,942	63	38 (36)	31 (32)	39% (43\%)	1.23 (1.12)	$572 \mathrm{~s}(52 \mathrm{~min})$	
aaed2000	1,298	3,036	87	55 (52)	51 (51)	36% (40\%)	1.09 (1.02)	707 s (75 min)	
FreeBSD-8_0_0	1,397	15,692	76	47 (41)	27 (30)	38% (46\%)	1.72 (1.37)	$831 \mathrm{~s}(120 \mathrm{~min})$	
ea2468	1,408	3,319	65	38 (36)	31 (32)	41% (45\%)	1.24 (1.12)	$721 \mathrm{~s}(67 \mathrm{~min})$	

optimality	7 $[15 \%]$
$[55 \%]$	

improvements

How Low Can We Go? Minimizing Interaction Samples for Configurable Systems Dominik Krupke
FOSD 2024-04-12

summary

$$
\begin{aligned}
\min & \sum_{i=1}^{k} u_{i} \\
\forall i=1, \ldots k, I \in \mathcal{I}: & \overline{u_{i}} \Longrightarrow \overline{y_{I}^{i}} \\
\forall i=1, \ldots k, \mathcal{D}_{j} \in \mathcal{D}: & \bigvee_{\ell \in \mathcal{D}_{j}} x_{\ell}^{i} \\
\forall i=1, \ldots k, I \in \mathcal{I}: & y_{I}^{i} \Longrightarrow \bigwedge_{\ell \in I} x_{\ell}^{i} \\
\forall I \in \mathcal{I}: & \bigvee_{i=1}^{k} y_{I}^{i}
\end{aligned}
$$

(a) Compatibility Graph

(d) Subgraph of potential extension

(b) Set of mutually excluding interactions

(c) Remove part of set

(e) Solution of subgraph

(f) Combination to larger set

