
Synthesis-Based Engineering of Supervisors
for System Product Lines

Michel Reniers

joint work with Sander Thuijsman

Eindhoven University of Technology, April 10, 2024

mailto:M.A.Reniers@tue.nl


Who am I?

▶ Master and PhD from TU/e in Computer Science
▶ Associate professor in Control Systems Technology

group of Mechanical Engineering
▶ Associate editor of Automatica, Discrete Event

Dynamic Systems and Open Journal of Control
Systems

▶ Research topics:
▶ Model-based Engineering of Supervisory Control
▶ Discrete-event systems
▶ Supervisory control theory and synthesis
▶ Simulation-based performance analysis



Motivation

▶ until 2050 in NL 37 locks reach EoL and additionally 15 have too low capacity
▶ investment 2-4 billion C
▶ in the past, each lock separate process also for (supervisory) control part



Overview

Supervisory control

Synthesis-based engineering

Supervisory controller synthesis

Supervisory control synthesis for product lines



What is supervisory control and where do you encounter it?



Supervisory control loop

plant P

supervisor S

events generated
by the plant

events enabled
by the supervisor

▶ Plant automaton describes the physically possible behavior of the system to
be controlled

▶ Requirements describe allowed states or event sequences
▶ Supervisor should prevent these by exercising control (i.e., disabling events)
▶ Interaction between supervisor and plant is by synchronizing shared events



Supervisory controller synthesis

Based on model of plant and requirements, supervisory control synthesis provides
a supervisory controller that is

1. Safe: the requirements are always adhered to

2. Nonblocking: a marked state can always be reached

3. Controllable: the supervisor does not disallow uncontrollable events to occur

4. Maximally permissive: no behavior is disabled that does not strictly need to
be disallowed to satisfy the aforementioned properties

[1] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete event processes, SIAM Journal on Control and Optimization 25 (1) (1987)

[2] L. Ouedraogo et al, Nonblocking and safe control of discrete-event systems modeled as extended finite automata, IEEE TASE 8 (3) (2011)



Basic supervisory control problem

For plant P, find a maximally permissive proper supervisor S

▶ Supervisory control synthesis is a method / algorithm that delivers a specific
maximally permissive proper supervisor for a given plant, if it exists

▶ It uses the uncontrolled system as a starting point



Synthesis by example: Workcell with an AGV

M1 M2 B

AGV

to Bend M1

start M1

start M2 end M2

Idle Busy

end M1

start M1

Idle Busy

end M2

start M2

Empty At M2At M1

end M2

to B

end M1

start M2 to B



Workcell with AGV: uncontrolled system
0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

0 1 2 3 4 5 6 7 8 9

M1 Idle Busy Idle Busy Idle Busy Idle Busy Idle Busy

M2 Idle Idle Idle Idle Busy Busy Busy Busy Idle Idle

AGV Empty Empty At M1 At M1 Empty Empty At M1 At M1 At M2 At M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!

▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!

▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7

▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented

▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!

▶ Prevent incoming events start M1 and start M2



Is the uncontrolled system nonblocking?

0 1 2 3

4 5 6 7

8 9

start M1 end M1

start M2

start M1

start M2

start M1

to B to B

end M1 start M1

end M2 end M2

start M1

▶ Location 7 is blocking!
▶ Location 6 is blocking!
▶ Disabling event start M1 from location 6 solves blocking of location 7
▶ Event end M1 is uncontrollable and may not be prevented
▶ Location 5 is a bad state and should not be entered!
▶ Prevent incoming events start M1 and start M2



Intermediate result

0 1 2 3

4

8 9

start M1 end M1

start M2

start M1

to B to B
end M2

start M1

0 1 2

4

8 9

start M1 end M1

start M2

to B to B
end M2

start M1

Repeat the previous reasoning!



Intermediate result

0 1 2 3

4

8 9

start M1 end M1

start M2

start M1

to B to B
end M2

start M1

0 1 2

4

8 9

start M1 end M1

start M2

to B to B
end M2

start M1

Repeat the previous reasoning!



Intermediate result

0 1 2 3

4

8 9

start M1 end M1

start M2

start M1

to B to B
end M2

start M1

0 1 2

4

8 9

start M1 end M1

start M2

to B to B
end M2

start M1

Repeat the previous reasoning!



Iterative synthesis procedure

Starting from the uncontrolled system as a candidate supervisor

Repeat the following steps:
1. Compute set of blocking states. If no blocking states are found, synthesis has

finished, otherwise continue
2. Compute set of bad states, which are the blocking states and all states from

which a bad state can be reached by a sequence of uncontrollable events
3. Remove all controllable events that target a bad state
4. Remove unreachable locations and edges between those



SBE workflow for supervisory controllers

hybrid
plant abstraction

discrete-event
plant

synthesis

requirements

simulation

supervisor

verification

code
generation code

image

[3] D. A. van Beek et al, CIF 3: Model-based engineering of supervisory controllers, TACAS, 2014



SBE workflow for supervisory controllers

hybrid
plant abstraction

discrete-event
plant

synthesis

requirements

simulation

supervisor

verification

code
generation code

image

[3] D. A. van Beek et al, CIF 3: Model-based engineering of supervisory controllers, TACAS, 2014



Tool support: CIF as part of ESCET

† ESCET toolset and documentation is open source and freely available at eclipse.org/escet
[4] W. J. Fokkink et al, Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit, TACAS, 2023

eclipse.org/escet


Supervisory Control Synthesis for Product Lines

This approach consists out of the following steps:

1. Representing the feature model in extended finite automata
2. Capturing dynamic configuration of features in the models
3. Modeling uncontrolled system behavior taking the configuration into account

▶ component-wise specification of system behavior
▶ component behavior (events) linked to the presence of features

4. Modeling requirements depending on presence of features
▶ specification of behavioral requirements
▶ specification of requirements for transitional phase during reconfiguration

5. Applying supervisory controller synthesis

[5] M. ter Beek, M. Reniers, E. de Vink, Supervisory controller synthesis for product lines using CIF 3, ISoLA 2016
[6] M. Reniers and S. Thuijsman, Supervisory control for dynamic feature configuration in product lines, FDL, 2020
[7] S. Thuijsman, M. Reniers, Supervisory control for dynamic feature configuration in product lines, ACM TECS (2023)



Static feature models in CIF
Machine


M

Ringtone

R

Change

X

Beverage

B

Coin

O

Sweet

S

Cappuccino

P

Tea

T

Coffee

C

Dollar

D

Euro

E

Name: cost

Domain: int

Value: 10

Name: cost

Domain: int

Value: 3

Name: cost

Domain: int

Value: 5

Name: cost

Domain: int

Value: 7

Name: cost

Domain: int

Value: 5

Name: cost

Domain: int

Value: 5

Name: cost

Domain: int

Value: 5

Name: cost

Domain: int

Value: 5

[8] M. ter Beek and E. de Vink, Using mCRL2 for the analysis of software product lines. FormaliSE 2014



Features and Feature constraints

plant def FEATURE():
disc bool present in any;
location: initial ; marked;

end

plant def FEATURE_ATTRIBUTED(alg int x):
disc bool present in any;
alg int cost = if present : x else 0 end;
location: initial ; marked;

end

F1: FEATURE();
F2: FEATURE_ATTRIBUTED(7);
...

alg bool r1 = F0.present <=> true; //root
alg bool r2 = F1.present <=> F2.present; //mandatory
alg bool r3 = F2.present => F1.present; //optional
alg bool r4 = (F1.present <=> (not(F2.present) and F.present)) and (F2.present <=> (not(F1.present) and F.

present)); //alternative
alg bool r5 = F.present <=> (F1.present or F2.present); //or
alg bool r6 = F1.present => F2.present; //requires
alg bool r7 = not (F1.present and F2.present); //excludes



Valid configurations

alg bool sys_valid = r1 and r2 and r3 and ...;

alg int cost_sum = F2_ATTRIBUTED.cost+F3_ATTRIBUTED.cost+F5_ATTRIBUTED.cost;
alg bool cost_valid = cost_sum <= 30;

plant automaton Validity:
location: initial sys_valid and cost_valid; marked;

end

Features with parameters:

enum colordomain = red, yellow, blue, NA;

plant def BallFeature(alg colordomain clr):
disc bool present in any;
alg colordomain color = if present : clr else NA end;
location: initial; marked;

end

RedBall: BallFeature(red);
YellowBall: BallFeature(yellow);



Static feature model for coffee machine in CIF

plant def FEATURE(): plant def FEATURE_ATTRIBUTED(alg int x):
disc bool present in any; disc bool present in any;
location: initial ; marked; alg int cost = if present : x else 0 end;

end location: initial ; marked;
end

FM, FO, FB : FEATURE();
FS, FR, FE, FD, FC : FEATURE_ATTRIBUTED(5);
FX : FEATURE_ATTRIBUTED(10);
FP : FEATURE_ATTRIBUTED(7);
FT : FEATURE_ATTRIBUTED(3);

alg bool r1 = FM.present <=> true; alg bool r8 = FP.present => FB.present;
alg bool r2 = FM.present <=> FS.present; alg bool r9 = FB.present <=> FC.present;
alg bool r3 = FM.present <=> FO.present; alg bool r10 = FT.present => FB.present;
alg bool r4 = FR.present => FM.present; alg bool r11 = FP.present => FR.present;
alg bool r5 = FM.present <=> FB.present; alg bool r12 = not(FD.present and FP.present);
alg bool r6 = FX.present => FM.present;
alg bool r7 = (FE.present <=> (not(FD.present) and FO.present))

and (FD.present <=> (not(FE.present) and FO.present));

alg bool sys_valid = r1 and r2 and r3 and r4 and r5 and r6 and r7 and r8 and r9 and r10 and r11 and r12;

alg int cost_sum = FS.cost+FR.cost+FX.cost+FE.cost+FD.cost+FP.cost+FC.cost+FT.cost;
alg bool cost_valid = cost_sum <= 30;

plant automaton Validity:
location: initial sys_valid and cost_valid; marked;

end



Dynamic configuration - Single feature reconfiguration

plant def FEATURE():
uncontrollable come, go;
disc bool present in any;
location: initial; marked;

edge come when not present do present := true;
edge go when present do present := false;

end

▶ come and go event for each feature (that can be removed or added)
▶ come and go events can be controllable or uncontrollable ⇒ system

dependent (any mix is possible)
▶ if plant Validity is included only single feature reconfigurations from valid to

valid configurations are possible
▶ if plant Validity is absent all (valid and invalid) configurations are included
▶ restricting reconfiguration to valid configurations is discussed later



Dynamic configuration - Multi feature reconfiguration

▶ simultaneously remove a feature and add another feature without violating the
feature constraint that exactly one of these is always present

▶ a global event (swap) can be introduced on which the automata (F1 and F2)
synchronize and their presence variables are updated

uncontrollable swap;

plant F1: plant F2:
disc bool present in any; disc bool present in any;
location: initial ; marked; location: initial ; marked;
edge swap when present do present:=not(present); edge swap when present do present:=not present;

end end

alg bool r1 = (F1.present and not(F2.present)) or (F2.present and not(F1.present));
alg bool sys_valid = r1;

plant automaton Validity:
location: initial sys_valid; marked;

end



Reconfiguration with strict feature configuration - Coffee machine

F
R
.
c
o
m
e

FX.come

FT.come

FR.come

F
X
.
c
o
m
e

FT.go

F
R
.
c
o
m
e

FX.come

FT.come

F
R
.
c
o
m
e

FX
.c
om
e

FT.go

F
R
.
c
o
m
e

FX.go

F
T
.
c
o
m
e

F
X
.
g
o

F
T
.
g
o

F
R
.
c
o
m
e

FX.go

FT.come

FX
.g
o

FT.go

F
R
.
g
o

FX.come

F
T
.
c
o
m
e

FR.go

F
T
.
g
o

F
R
.
g
o

FX.come

F
P
.
c
o
m
e

FT
.c
om
e

F
R
.
g
o

FP.come

FT
.g
o

F
P
.
g
o

F
T
.
c
o
m
e

FP.go

F
T
.
g
o

F
R
.
g
o

FX.go

F
R
.
g
o

FX.go



Constraints during reconfiguration

▶ One may allow invalid configurations to be reached
▶ for the coffee machine there may be a constraint when the change feature is

present, the coin feature must always be present
▶ resulting state space consists of 1,364 states, among which 16 initial states.

There are 13,440 come and go transitions
▶ Given the possibilities offered by CIF and the modularly defined feature

constraints, it is possible to make more complex constraints

plant invariant FX.present => FO.present;



Modeling of uncontrolled behavior - Coffee system

The component-wise behavioral specification is taken from [5]

Coffee

NoChoice

Cappuccino

Coffee

coffee

cappuccino

done

coffee

done

cappuccino

pour coffee,pour milk

pour coffee

Tea

NoChoice

Tea

teadone

pour tea

Sweet

NoChoice

Sugar

NoSugar

no sugar

sugar

done

no sugar

done

sugar

sugar

pour sugar

no sugar

Ringtone

ring

Coin

insert

Cancel

cancel

Machine

take cup



Linking events to features

▶ events cannot occur if they are ‘connected’ to features that are not present
▶ in coffee machine example, for each component there is a one-to-one

correspondence with the features
▶ modeler should indicate for each event which features need to be present
▶ the availability of an event may also be dependent on the value of some

attribute

plant automaton event_feature_conditions:
location: initial; marked;

edge e when F1.present and F2.A = x;
end



Connection between events and features for the coffee machine

plant automaton event_feature_link:
location: initial; marked;

edge Coffee.cappuccino when FC.present;
edge Coffee.coffee when FC.present;
edge Coffee.done when FC.present;
edge Coffee.pour_coffee when FC.present;
edge Coffee.pour_milk when FC.present;

edge Tea.done when FT.present;
edge Tea.pour_tea when FT.present;
edge Tea.tea when FT.present;

edge Sweet.done when FS.present;
edge Sweet.no_sugar when FS.present;
edge Sweet.pour_sugar when FS.present;
edge Sweet.sugar when FS.present;

edge Ringtone.ring when FR.present;

edge Coin.insert when FO.present;

edge Cancel.cancel when FX.present;

edge Machine.take_cup when FM.present;
end



Specification of behavioral requirements - coffee machine

1. The coffee and tea component can not both be ready to pour:

requirement not(Coffee.Coffee and Tea.Tea);

2. Coffee can only be selected when no choice has been made yet:

requirement Coffee.coffee needs Coffee.NoChoice and Tea.NoChoice;

3. When the ringtone feature is present, it may only ring (once) after the coffee
or tea component is finished:

requirement automaton RingAfterBeverageCompletion:
location NotCompleted:

initial; marked;
edge Coffee.done when FR.present goto Completed;
edge Tea.done when FR.present goto Completed;
edge Coffee.done, Tea.done when not FR.present;

location Completed:
edge Ringtone.ring goto NotCompleted;

end



Requirements during configuration - coffee machine

1. It may be unsafe to cancel the order in case both the euro and dollar feature
are present, as it is unclear from which feature the coin should be returned:

requirement Cancel.cancel needs not(FE.present and FD.present);

2. In case the sweet feature is ready to pour sugar, it should not be removed:

requirement Sweet.Sugar => FS.present;



Coffee machine, single feature reconfiguration, valid configurations

supervisor automaton sup:
alphabet ...;
location:

initial;
marked;
edge Cancel.cancel when ...;
edge Coffee.cappuccino when CoinPresence.CoinPresent and not Coffee.Coffee and (Tea.NoChoice and
TakeCupWhenCoffeeOrTeaDone.NotPoured);

edge Coffee.coffee when CoinPresence.CoinPresent and not Coffee.Cappuccino and (Tea.NoChoice and
TakeCupWhenCoffeeOrTeaDone.NotPoured);

edge Coffee.done when not Coffee.Cappuccino and CoffeePoured.Poured or Coffee.Cappuccino and (
CoffeePoured.Poured and MilkPoured.Poured);

edge Coffee.pour_coffee when CoffeePoured.NotPoured;
edge Coffee.pour_milk when MilkPoured.NotPoured;
edge Coin.insert when true;
edge Machine.take_cup when true;
edge Ringtone.ring when true;
edge Sweet.done when true;
edge Sweet.no_sugar when CoinPresence.CoinPresent and not Sweet.Sugar and (PourSugarTwice.Idle and
TakeCupWhenSugarDone.NotPoured) or (CoinPresence.CoinPresent and (not Sweet.Sugar and PourSugarTwice.
SugarNeeded) or CoinPresence.CoinPresent and (Sweet.Sugar and PourSugarTwice.count = 2));

edge Sweet.pour_sugar when true;
edge Sweet.sugar when CoinPresence.CoinPresent and TakeCupWhenSugarDone.NotPoured;
edge Tea.done when true;
edge Tea.pour_tea when TeaPoured.NotPoured;
edge Tea.tea when CoinPresence.CoinPresent and (Coffee.NoChoice and TakeCupWhenCoffeeOrTeaDone.
NotPoured);

end



Case study: Body Comfort System

Status

LED

Manual

Power


Window

Automatic

Power


Window

Finger

Protection Electric Heatable Interior


Monitoring
Automatic

Locking

Control

Alarm

System

Safety

Function

Control

Automatic


Power

Window

Adjust

Exterior

Mirror

Power

Window

Exterior
Mirror

Alarm

System

Central

Locking

System

Remote

Control


Key

Security

BCS

Human

Machine

Interface

Door

System

LED

Alarm

System

LED

Finger


Protection

LED

Power


Window

LED

Control

Locking

System

LED

Heatable

LED

Exterior

Mirror

[9] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer, Delta-oriented Software Product Line

Test Models - The Body Comfort System Case Study. Technical Report. TU Braunschweig, 2013



Numbers ...

▶ 134,217,728 configurations from which 11,616 are valid
▶ 31 plant automata representing the behavior of the components, 27 feature

automata, 18 plant automata that link the component events to the presence
of the features, and 55 requirements

▶ supervisor is obtained in roughly 0.3 seconds and requires no more than 0.5
GB of memory

State space Number of states

Worst-case 7.7 ·1020

Uncontrolled static 3.2 ·1014

Uncontrolled dynamic 6.2 ·1020

Controlled static 7.6 ·1013

Controlled dynamic 1.1 ·1020



Concluding Remarks

▶ Synthesis-based engineering of supervisory controllers for product lines
described by a feature model

▶ Allowing dynamic reconfiguration

▶ Several solutions for control of/during reconfiguration

▶ CIF language shown to be adequate

▶ Presented small case study, feasibility shown for (much) larger Body Comfort
System



... ACM Transactions on Embedded Computing Systems (2023)

Supervisory Control for Dynamic Feature Configuration in Product
Lines
SANDER THUIJSMAN and MICHEL RENIERS, Eindhoven University of Technology, The Netherlands

In this paper a framework for engineering supervisory controllers for product lines with dynamic feature coniguration is
proposed. The variability in valid conigurations is described by a feature model. Behavior of system components is achieved
using (extended) inite automata and both behavioral and dynamic coniguration constraints are expressed by means of
requirements as is common in supervisory control theory. Supervisory controller synthesis is applied to compute a behavioral
model in which the requirements are adhered to. For the challenges that arise in this setting, multiple solutions are discussed.
The solutions are exempliied in the CIF toolset using a model of a cofee machine. A use case of the much larger Body
Comfort System product line is performed to showcase feasibility for industrial-sized systems.

CCS Concepts: · Software and its engineering → Domain speciic languages; Software product lines; · Computing
methodologies→ Modeling methodologies.

Additional Key Words and Phrases: Discrete Event Systems, Supervisory Controller Synthesis, Feature Models

1 INTRODUCTION
In present day development of systems and products, reuse of both software and hardware components is sought
to reduce development and production costs, and shorten time-to-market. The goal of Software/System Product
Line Engineering (SPLE) is to facilitate reuse throughout all phases of systems engineering [24]. Adoption of
this paradigm requires identiication of the core assets of the products in the domain in order to exploit their
commonality and manage their variability, often deined in terms of features. A feature is deined as a logical unit
of behavior speciied by a set of functional and non-functional requirements [7] or a distinguishable characteristic
of a concept (system, component, etc.) that is relevant to some stakeholder [11]. Feature models may be used to
deine which combinations of features are considered valid product conigurations [5].
In literature there has been much attention for correct coniguration of SPLs [5]. Behavioral correctness is

studied only recently, since [10]. Typically the approaches that are used for guaranteeing a proper functioning
SPL (i.e., correct with respect to its requirements or speciications) are veriication technologies such as theorem
provers [9], model checkers [2], and correct-by-construction approaches such as supervisory controller synthesis
[35]. In [35], for the irst time supervisory controller synthesis [25, 26] has been considered for constructing
supervisory controllers for an SPL described by a feature model.

Supervisory control theory, as introduced by [26], is a model-based approach to control discrete event systems.
In this framework a model is created of the uncontrolled system, and behavioral requirements are speciied that
deine what behavior is allowed. Using these models, a supervisory controller can be computed algorithmically
(synthesized), such that it restricts the behavior of the system to always be in accordance with the requirements.
Depending on the synthesis algorithm, the behavior of the system under control is guaranteed to have some
useful properties, such as safety, nonblockingness, controllability, and maximal permissiveness. The beneits of
supervisory control theory have been demonstrated in industrial use cases, such as for example supervisory

Authors’ address: Sander Thuijsman, s.b.thuijsman@tue.nl; Michel Reniers, m.a.reniers@tue.nl, Eindhoven University of Technology, P.O.
Box 513, Eindhoven, The Netherlands, 5600 MB.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1539-9087/2023/1-ART
https://doi.org/10.1145/3579644

ACM Trans. Embedd. Comput. Syst.



Synthesis-Based Engineering of Supervisors
for System Product Lines

Michel Reniers

joint work with Sander Thuijsman

Eindhoven University of Technology, April 10, 2024

mailto:M.A.Reniers@tue.nl

	Supervisory control
	Synthesis-based engineering
	Supervisory controller synthesis
	Supervisory control synthesis for product lines

