

Configurable Scheduling Problems

Malte Lochau

FOSD Meeting 2024, April 9th – 12th TU Eindhoven

Schedulers of Embedded Software Systems

Automotive E/E

Industrial Automation / Robotics

Avionics

- Scheduler is central/critical component of modern embedded software systems.
- Scheduler assigns restricted resources to computational tasks.
- Scheduler influences functional feasibility and non-functional properties.

Job Shop Scheduling Problem (JSP)

Problem Instance: Solution (Schedule): Jobs: Constraints / Goals: Cores: $(\langle \chi_1, t_1 \rangle | \langle \chi_2, t_2 \rangle, \dots, \langle \chi_{k_1}, t_{k_1} \rangle)$ j_2, t_2 C_1 j_n, t_{k_n} j_1, t_1 the first task of job j_1 requires core χ_1 deadline (1) ensure all critical job deadlines for t_1 time units. job *j*₁ t_{D_2} $(\langle \chi_1, t_1 \rangle, \langle \chi_2, t_2 \rangle, \dots, \langle \chi_{k_2}, t_{k_2} \rangle)$ c_2 j_2, t_1 j_{1}, t_{2} j_2, t_3 $(\langle \chi_1, t_1 \rangle, \langle \chi_2, t_2 \rangle, \dots, \langle \chi_{k_n}, t_{k_n} \rangle)$ c_m j_1, t_3 (where n, m > 100) (2) minimize makespan

- NP-hard optimization problem (reducible to TSP)
- Canonical exact solution by Mixed Integer Linear Program (MILP) encoding.
- Many problem variations/extensions and heuristic solution approaches.

Static vs. Dynamic Scheduling

Static scheduling strategy: Precomputation of metascheduling graph in advance.

- + Unrestricted computational resources available for making optimal scheduling decisions off-line.
- Ineffective scheduling decisions due to lack of knowledge about possible contextual events.
- Complete meta-schedule graph too large for efficient run-time deployment.

Dynamic scheduling strategy: Reactive computation of schedule changes on demand.

- + Precise knowledge about recent run-time context available through run-time monitoring.
- Ineffective scheduling decisions due to limited resources for computing re-scheduling decisions on-line.
- Effective scheduling further requires pro-active rescheduling by context prediction.

Re-Configurable Scheduling Problems

- Apply variability encoding and family-based analysis technique to precompute meta-scheduler model.
- Reduce size of meta-scheduler graph by symbolic representation and superimposition/merging of schedules.

Thank You!

malte.lochau@uni-siegen.de