

MANAGING VARIABILITY AND
EVOLUTION IN HIGH-TECH
EQUIPMENT
FOSD 2024 Keynote

Prof. dr. Benny Akesson

This presentation has four key messages:

1. System complexity trends for high-tech equipment

2. TNO-ESI and its role in the high-tech industry

3. Finished industry case:
Specification, verification, and adaptation of software interfaces

4. Ongoing industry case:
Variability and evolution in software platforms

KEY MESSAGES

4

EXAMPLES OF DUTCH HIGH-TECH SYSTEMS

50 km
(30 mi)

5

• Five technological and market trends drive increasing complexity in high-tech systems:

1. Additional functionality

• Number of interfaces and lines of code are rapidly increasing

2. Mass customization

• Increased customization of systems at design time to the point where each system is unique

3. Long life times

• Systems operate for decades and need to continuously evolve after deployment

4. Increasing autonomy

• Systems acting autonomously with little or no human interaction

5. Systems of systems

• Interconnected systems of which nobody is in complete control

SYSTEM COMPLEXITY IS INCREASING!

6

• Managing complexity in high-tech systems is critical to successful development and deployment

• Impacts all phases of development: design, implementation, verification, and evolution

• Increasing complexity cannot be dealt with by current engineering methodologies

• Increasing development and maintenance costs

• Increasingly hard to guarantee functional correctness and balance system qualities

• Severe shortage of skilled people

• New design methodologies are required to manage the increasing complexity and enable future generations of
systems to be developed efficiently!

• ESI is an organization that orchestrates the innovation chain for design methodologies in the Dutch high-tech eco-
system and conducts applied research to improve industrial practice

MANAGING COMPLEXITY

7

TNO-ESI AT A GLANCE

SYNOPSIS

• Foundation ESI started in 2002

• ESI acquired by TNO per

January 2013

• ~60 staff members many with

extensive industrial experience

• 8 part-time professors

FOCUS

Managing complexity of
high-tech systems

through
• system architecting
• system reasoning and
• model-driven engineering

delivering
• methodologies validated in

cutting-edge industrial
practice

PARTNER BOARD

8

A. Abstraction: Identify high-level concepts that hide low-level details

• Software is programmed in high-level programming languages and not using machine code

B. Boundedness: Impose acceptable restrictions on the considered problem space

• Constraints on environment in which system has to function correctly

C. Composition: Divide one problem into multiple independent smaller problems

• System is decomposed into logical functions that are developed individually

Automation is key to coping with complexity

• Not a fundamental technique to reduce complexity, rather about productivity

ABC OF COMPLEXITY MANAGEMENT

• Model-based methodologies are promising for managing complexity

• There is a clear relation to the ABC Complexity Management Techniques

• Models are abstractions of the system

• System boundedness can be expressed through parameter ranges and constraints in models

• Systems are (de-)composed into models covering different parts or aspects.
Model-based development methodologies are the composition of these

• The formal nature of models provide a strong link to automation

• Models are used as a source for automated analysis and synthesis

MANAGING COMPLEXITY WITH MODELS

SPECIFICATION,
VERIFICATION, AND

ADAPTATION OF SOFTWARE
INTERFACES

10

2

2019-2021

MOTIVATION

11

• Thales systems have life time > 30 years and require upgrades

• Both technology and customer requirements significantly change during life time

• Compute nodes need to be added or replaced to counter obsolescence or improve performance

• New software with new capabilities becomes available

• System upgrades can take 1-2 years and happen every 10-15 years

• Many small updates collected into big infrequent upgrades

• System evolves slowly and in big steps, increasing risk

• Systems need to continuously evolve to reduce risk
and increase added value

MODULARITY IN SOFTWARE ARCHITECTURES

• Increasing software complexity is tackled by modularization

• Software is decomposed into services corresponding to particular functionality (composition)

• Asynchronous communication often used to achieve loose coupling between services

• Abstraction of service implementation and technology is provided by an interface

• Modularity addresses the stated complexity drivers

• Improved scalability, customization, and evolvability

12

service

service

Interface

service

Interface Interface

service service

PROBLEM STATEMENT

1. Many asynchronously communicating services lead to an explosion of possible behaviors

• Interactions between services become very hard to verify

• Early design errors are detected much later in the system life-cycle, increasing cost

2. Updating interfaces becomes prohibitive

• Manually changing an interface is quick, but updating many incompatible services takes time

• Evolving interfaces is hence expensive and time consuming, resulting in technical debt

generated
adapter

specification

verified
adapter

specification

14

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

generated
adapter

specification

verified
adapter

specification

15

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

16

• ComMA was selected as specification language for six good reasons

1. We did not want to reinvent the wheel by making a new interface specification language

2. specifies both structure and behavior, required to validate both aspects of compatibility

3. models both synchronous and asynchronous communication

4. automatic inference and migration of interface specifications simplifies industrial adoption

5. the tooling is based on Eclipse, which is one of the most commonly used modeling tools in the
embedded domain

6. developed and successfully applied in industry

INTERFACE SPECIFICATION

Web: https://projects.eclipse.org/projects/technology.comma

17

Domain Specific Language (DSL) to express client-server interface:

• Signature

• Commands: synchronous function calls - from client to server

• Signals: asynchronous function calls - from client to server

• Notifications: asynchronous notifications - from server to client(s)

• Behavior by protocol state machine

• Contract between client(s) and server; allowed sequences of events

• Non-determinism allowed

• Supports both data constraints and timing constraints

ABOUT ECLIPSE COMMASUITE

Interface

Cmd(..) Notify(….)

client

server

reply(..) Sig(..)

18

BIGGER PICTURE WITH COMMA

Monitoring Statistics

Structure Behavior

Visualization Documentation

Model
Inference

G
en

erated

Simulation

generated
adapter

specification

verified
adapter

specification

19

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

20

• Verification of ComMA specification possible by translation into Colored Petri Net (CPN) model

• State of a CPN model

• Full state is the marking + values of all variables

• Initial full state is initial marking + initial values of all variables

• A reachability graph is generated from the CPN model

• Considers all paths from the initial full state for a given set of input data

REACHABILITY GRAPH

21

• Reachability graphs model quality checking using reachability analysis

• Allows state and transition coverage of interface to be determined

• Enables unreachable states, deadlocks, livelocks, and sink states in server state machine to be detected

• Also race conditions, property violations, and confusion in interactions with a mirrored client

• User gets feedback on model quality from a dashboard

• Lists and visualizes quality issues and provides guidelines for how to resolve them

MODEL QUALITY CHECK

IMPRESSION OF MODEL QUALITY DASHBOARD

22

generated
adapter

specification

verified
adapter

specification

23

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

Petri netPetri net

Client ComMA model Server ComMA model

Use open-source Petri net
Analysis Tools (PnAT) to
compute reachability graph
and check for termination
(does not consider data)

Connect nets and export to PNML file

24

generated
adapter

specification

verified
adapter

specification

25

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

26

• Overview of adapter generation approach

• ComMA Mapping DSL describes relation between messages for server and client

• Adapter encodes mapping rules and is responsible for transformations

• DSL generates adapter Petri net specification

GENERATE ADAPTER

AdapterServer v2 Client v3
cs.PTOn -> sr.PTOn;
cs.PTGetState -> sr.PTGetState;
cs.PTOff -> sr.PTOff, cr.PTState;
ss.PTState -> cr.PTState;

Mapping Rules

27

SERVER AND CLIENT CONNECTED THROUGH AN ADAPTER

Mapping Rules

cs.A -> sr.A1, sr.A2
cs.B -> sr.B
ss.C -> cr.C
ss.D -> cr.D
cs.E1, cs.E2 -> sr.E
 -> sr.F

generated
adapter

specification

verified
adapter

specification

28

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

METHODOLOGY OVERVIEW

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

Petri netPetri net

Client ComMA model Server ComMA model

Use open-source Petri net
Analysis Tools (PnAT) to
compute reachability graph
and check for termination
(does not consider data)

Connect nets and export to PNML file

ComMA Mapping
DSL

Petri net

29

generated
adapter

specification

verified
adapter

specification

• Six-step Methodology

1. Specify structure and behavior of interfaces using ComMA

2. Verify quality of interfaces using quality dashboard and resolve issues through design guidelines

3. Verify structural and behavioral compatibility between server and client interfaces

4. Specify adapter between client and server using Mapping DSL

5. Verify compatibility of server and client using generated adapter

6. Deploy Adapter in the system

SUCCESS, adapter
deployed

Verify Server
Interface
Quality

Verify
Interface

Compatibility

Specify
Adapter Verify Adapter

Verify Client
Interface
Quality

SUCCESS, no adapter needed

FAIL, no adapter exists

incompatible
interfaces

compatible
interfaces

Step 1 Step 2 Step 3 Step 4

METHODOLOGY OVERVIEW

Specify Server
Interface

Specify Client
Interface

Step 5

ComMA
interface

ComMA
interface

verified
interfaces

Deploy
Adapter

Step 6

30

BIGGER BIGGER PICTURE WITH COMMA

Monitoring Statistics

Structure Behavior

Visualization Documentation

Model
Inference

G
en

erated

Code Stubs

switch(state) {

 case ON {

 }

 case OFF{

 }

}

Adapter Generation

Model Quality Checks

Generated

31

Simulation

• This project is a text book example of open innovation at work

• Initial prototype was based on theory and tools from previous European academic research

• Leveraged Eclipse CommaSuite (ESI&Philips) and results were contributed back to open source

• Methodology and proof-of-concept tool delivered to Thales to evaluate for adoption

• Three UvA students contributed to the research, publishing theses and academic papers

• Developed knowledge transferred in a two-day course

• Two versions of course, one based on Petri nets and one on CommaSuite

• Course has been given to >300 participants at Thales and UvA

OPEN INNOVATION AT WORK!

VARIABILITY AND
EVOLUTION IN SOFTWARE

PLATFORMS

33

3

2024-?

34

• There is a trend towards increased customization in many industries, including high-tech equipment

• Every customer wants slightly different features

• Puts pressure on R&D effort, delivery times, and cost of products

• Industry has been addressing this challenge by moving towards a platform-based approach

• New customized products can be derived by configuring a general set of building blocks

• Often requires a transition from project organizations to product organizations

• From engineering-to-order to configure-to-order

INTRODUCTION

35

• High-tech equipment has long life times of several decades in the field

• Need to cope with end of life of components, spare parts, and maintenance

• The system outlives many of its constituent technologies, in particular digital technologies

• There is a need for the system to continuously evolve during its life time

• System needs upgrades to new (digital) technology and software to remain operational

• Customer wants improved functionality that increase the added value

LONG LIFE TIMES AND CONTINUOUS EVOLUTION

36

• Evolving system variants requires substantial re-development effort and is costly

• Essentially a new iteration through the complete development cycle

• Product configurations must be updated to reflect new features

• System is often manually ported to new software technologies

• System must be re-verified, including its performance, which is an emerging property from interacting
hardware and software components

• This project addresses the challenge of reducing the time and cost associated with system evolution at the
level of the software platform (infrastructure)

PROBLEM STATEMENT

37

Vision

A product-based approach with building blocks to quickly configure custom
solutions for each customer that always satisfy their (performance)
requirements throughout their entire lifecycle

Long-term goal

A model-based methodology and supporting tool that enables custom
solutions to be specified in a technology-agnostic manner, and where a
software deployment that satisfies (performance) requirements is
automatically generated and regenerated, as software technologies evolve

VISION AND GOAL

38

1. To what extent can the generic configuration model be decoupled from the deployment technology?

• Investigating a domain-specific language that describes system modules at the level of the capabilities
the provide and require, and the hardware and software components they need to realize functionality

• Specification is independent from the software technology used, e.g. for containerization or
orchestration, such as Kubernetes or Docker

• Automatic generation of deployments for different technologies addresses evolution of the level of the
platform, reducing effort for all variants

2. How can we efficiently identify a software deployment that satisfy performance requirements for a
particular product configuration and deployment technology?

• Investigating a learning-based approach to optimize deployments for a particular variant

• Performance verification successful if a (set of) deployment can be found that
satisfies requirements for relevant loads

RESEARCH QUESTIONS AND APPROACH FOR 2024

CONCLUSIONS

39

4

Conclusions

40

• The system complexity of high-tech equipment is increasing

• Market demands for more functionality, customization, and evolvability

• ESI and its partners addresses this complexity challenge using model-based systems engineering methodologies
in an open innovation ecosystem

• Two industrial cases related to variability and evolution of software in high-tech equipment were presented

1. A model-based methodology for specification, verification, and adaptation of software interfaces based on
domain-specific languages and Petri nets was presented and its impact discussed

2. Problem description and research directions for a challenge to reduce the cost and effort related to variability
and evolution at the level of the software platform

• We are happy to discuss this research with you and hear your feedback and input

• … and let us know if you are interested in making the next step in your career ☺

CONCLUSIONS

ACKNOWLEDGEMENTS

THE RESEARCH IS CARRIED OUT AS PART OF THE DYNAMICS AND TECHFLEX PROJECTS UNDER THE
RESPONSIBILITY OF TNO-ESI WITH THALES NEDERLAND B.V. AS THE CARRYING INDUSTRIAL PARTNER. THE
DYNAMICS AND TECHFLEX RESEARCH IS SUPPORTED BY THE NETHERLANDS ORGANISATION FOR APPLIED
SCIENTIFIC RESEARCH TNO.

41

42

	Introduction
	Slide 1
	Slide 2: Managing Variability and evolution in high-tech equipment
	Slide 3: key messages
	Slide 4: Examples of Dutch High-tech Systems
	Slide 5: System Complexity is Increasing!
	Slide 6: Managing Complexity
	Slide 7: TNO-ESI at a Glance
	Slide 8: ABC of Complexity Management
	Slide 9: Managing Complexity with Models

	Dynamics
	Slide 10: Specification, verification, and adaptation of software interfaces
	Slide 11: Motivation
	Slide 12: Modularity in Software Architectures
	Slide 13: Problem Statement
	Slide 14: Methodology Overview
	Slide 15: Methodology Overview
	Slide 16: Interface Specification
	Slide 17: About Eclipse ComMAsuite
	Slide 18: Bigger Picture with ComMA
	Slide 19: Methodology Overview
	Slide 20: Reachability Graph
	Slide 21: Model Quality Check
	Slide 22: Impression of Model Quality Dashboard
	Slide 23: Methodology Overview
	Slide 24
	Slide 25: Methodology Overview
	Slide 26: Generate Adapter
	Slide 27: Server and client connected through an adapter
	Slide 28: Methodology Overview
	Slide 29
	Slide 30: Methodology Overview
	Slide 31: Bigger Bigger Picture with ComMA
	Slide 32: Open Innovation at Work!

	TechFlex
	Slide 33: Variability and evolution in software platforms
	Slide 34: Introduction
	Slide 35: Long life times and Continuous Evolution
	Slide 36: Problem statement
	Slide 37: Vision and Goal
	Slide 38: Research Questions and approach for 2024

	Conclusions
	Slide 39: Conclusions
	Slide 40: Conclusions
	Slide 41: Acknowledgements
	Slide 42
	Slide 43

