NC STATE
UNIVERSITY

VARIABILITY MANAGEMENT FOR CLOUD-BASED SYSTEMS:
HOW FAR ARE WE?

m & Wesley K. G. Assuncao
¥ https://wesleyklewerton.github.io/
“ @wesleyklewerton

PRELIMINARIES

PhD: System variants > SPLs

Roberto E. Lopez-Herrejon - Jabier Martinez -
Wesley Klewerton Guez Assun:

Tewfik Ziadi - Mathieu Acher -

Silvia Vergilio Editors

Handbook
of Re-Engineering
Intensive Systems -

Information and Software Technology
Volume 117, January 2020, 106198

Automatic extraction of product line
architecture and feature models from UML
class diagram variants

Postdoc: Legacy systems > Microservices

Empirical Software Engineering (2022) 27: 51
https://doi.org/10.1007/510664-021-10049-7

®

Check for
updates

Analysis of a many-objective optimization approach
for identifying microservices from legacy systems

, 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International

Wesley K. G. Assungéo ‘Workshop on Software Engineering Research and Industrial Practice (SER&IP)

Alessandro Garcia' - Ju
Analysis of the Criteria Adopted in Industry to

Accepted: 1 September 2021/ . .
Extract Microservices

© The Author(s), under exclusi

into Software

The Journal of Systems and Software 210 (2024) 111969

Contents lists available at ScienceDirect

The Journal of Systems & Software

ELSEVIER journal homepage: www.elsevier.com/locateljss

In practice

s

Variability debt in opportunistic reuse: A multi-project field study ™

Daniele Wolfart?, Jabier Martinez®, Wesley K.G. Assungdo ©**, Thelma E. Colanzi®,
Alexander Egyed '

= PPGComp, Western Parand State University (UNIOESTE), Cascavel, Brazil

* Tecnalia, Basque Research and Technology Allance (BRTA), Derio, Spain

©CSG, North Garolina State University (NGSU), Raleigh, USA

4 0PUS, Pontfical Cathalic Universiy of Rio de Janciro (PUC-Rio), Rio de Janeiro, Brazil

“DIN, State Universty of Maringd (UEM), Maringd, Brazil

€155E, Johannes Kepler University Lins (JKU, Lini, Ausiria

https://wesleyklewerton.github.io/

Luiz Carvalho*, Alessandro Garcia*, Wesley K. G. Assungdo!, Rafael de Mello*, Maria Julia de Lima®
*Pontifical Catholic University of Rio de Janeiro (PUC-Rio). Rio de Janeiro, Brazil
{Imcarvalho, afgarcia, rmaiani } @inf.puc-rio.br
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 3, MARCH 2024 651
il
On the Usefulness of Automatically Generated = e

Microservice Architectures

Luiz Carvalho, Thelma Elita Colanzi ©, Wesley K. G. Assungao ©, Alessandro Garcia
Juliana Alves Pereira®, Marcos Kalinowski ®, Member, IEEE, Rafael Maiani de Mello
Maria Julia de Lima @, and Carlos Lucena

Abstract—The modernization of monolithic legacy systems
with microservices has been a trend in recent years. As part
of this ization, i ifying microservice i start-
ing from legacy code is challenging, as maintainers may con-
sider many criteria simultaneously. Multi-objective search-based

previous studies are, in fact, considered by maintainers; and
(iii) the maintainer profiles , the preferred granularity for
microservice, highly affect decisions. Finally, we observed
the maintainers needed little effort in adjusting the automatically
identified microservices to make them adoptable. In addition to

approaches sent a tate-of-the-art_solution to

a promising potential of search-based approaches to

PRELIMINARIES

2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International
Workshop on Software Engineering Research and Industrial Practice (SER&IP)

Analysis of the Criteria Adopted in Industry to
Extract Microservices

Luiz Carvalho*, Alessandro Garcia*, Wesley K. G. Assungiof, Rafael de Mello*, Maria Julia de Lima¥
*Pontifical Catholic University of Rio de Janeiro (PUC-Rio). Rio de Janeiro, Brazil
{Imcarvalho, afgarcia, rmaiani } @inf.puc-rio.br
TFederal University of Technology - Parand (UTFPR). Toledo, Brazil
wesleyk@utfpr.edu.br
1 Tecoraf Institute Pantifical Cathalic Tlniversity of Ria de Taneira (PITC-Rio) Rin de Taneira Rrazil

Reuse opportunities are considered on microservice ex- _

traction, albeit not unanimously. Reuse also achieved a
median of 4 in the responses. One participant mentioned
the practice of reuse “is indeed a key driving factor for
the migration to microservices architecture; it is important
to promote the reuse of the extracted microservice by other
systems”. However, the relevance of reuse was not unanimous.

https://wesleyklewerton.github.io/

SHORT-PAPER

¥Yinag f
Extraction of Configurable and Reusable Microservices from
Legacy Systems: An Exploratory Study

Authors: Luiz Carvalho, Alessandro Garcia Wesley K. G. Assung¢ao Rodrigo Bonifacio, Leonardo P. Tizzei,

Thelma Elita Colanzi Authors Info & Claims

SPLC '19: Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A « September 2019
Pages 26-31 » https://doi.org/10.1145/3336294.3336319

Published: 09 September 2019 Publication History M) Check for updates

99 20 A* 583

a T () Get Access

FEATURE-ORIENTED SW DEVELOPMENT

Variability Management

Product

Problem Space

Features as building blocks

Solution Space

Domain

knowledge
Knowlecgs]

Domain engineering

Domain analysis

Domain implementation

1. scoping,
variability modeling)

New

—---NeW__L__ | Features === -~ -~ o

Tequirements

1
i
i
i
i
1
1
Mapping
T
1
1
1
i
i
i
1
1
i

Common

———————— +implementation — —

artifacts

Customer
needs
Product Line Portfolio

Product

Application engineering

Feature
selection

Product derivation

(incl. validation and verification)

Product
b——

Feature: A prominent or distinctive user-visible aspect, quality, or characteristic of

a software system or systems.

A feature is a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option.

Kang et al.; Kastner and Apel

CLOUD-BASED SOFTWARE

Microservices

[

With a microservices architecture, an application is built as independent components
that run each application process as a service. These services communicate via a
well-defined interface using lightweight APIs. Services are built for business
capabilities and each service performs a single function.

https://aws.amazon.com/microservices/

FEATURES AND MICROSERVICES

Features as building bIocks

Problem Spac ! Solution Spac
! N

e user-visible aspect, quality, or
characteristic

e unit of functionality

e potential configuration option<—

Microservices

o2
52
1
\@/
independent components
well-defined interface

business capabilities
single function

VARIABILITY MANAGEMENT + MICROSERVIGES

RESEARCH-ARTICLE ’ in d f
Variability management meets microservices: six challenges
of re-engineering microservice-based webshops

Authors: Wesley K. G. Assuncdo, 2 Jacob Kriiger, 2 Willian D.F. Mendonca Authors Info & Claims

1. Feature Identification and Mapping

2. Variability Modeling

3. Microservice-Based SPL Architecture
S et 4. Microservice Interchanging

5

6

SPLC '20: Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A » October
2020 « Article No.: 22 « Pages 1-6 o https://doi.org/10.1145/3382025.3414942

Published: 19 October 2020 Publication History. M) Check for updates

Nagsa . Deep Customization of Microservices
. Re-Engineering a Microservice-Based SPL

A microservice implements a small unit of functionality that it provides through a network using
lightweight protocols. So, microservices can be combined to fulfill tasks and implement features of
a larger software system---resembling a variability mechanism in the context of a software product
line (SPL). Microservices and SPLs have similar goals, namely facilitating reuse and customizing, but
they are usually employed in different contexts. Any developer who has access to the network can
provide a microservice for any task, while SPLs are usually intended to implement features of a

specific domain. Due to their different concepts, using microservices to implement an SPL or

Problem Space ! Solution Space
adopting SPL practices (e.g., variability management) for microservices is a challenging cross-area £ 1 Domain implementation

H |
both techniques can complement each other, and thus tackling this é, kmm, Mopping
or organizations that employ either technique. In this paper, we E

3 (models source code,
advancing in this direction, and sketch six concrete challenges to e - | : :

artifacts. U

Product derivation

] -

inl. vldoton and verifction)

xability, (5) deep customization, and (6) re-engineering an SPL. We .
-
nends

‘eature identification, (2) variability modeling, (3) variable microservice @
> 5

'rve as a starting point for future research in this cross-area research @

Application engineering

concepts of one area are reinvented in the other.

https://doi.org/10.1145/3382025.3414942 !

M + MS CHALLENGE SOLUTIONS

RESEARCH-ARTICLE ’ in 6 f
Can microservice-based online-retailers be used as an SPL?: a
study of six reference architectures

Authors: Benjamin Benni, Sébastien Mosser, Jean-Philippe Caissy, 0 Yann-Gaél Guéhéneuc Authors Info &

Claims

SPLC '20: Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A « October
2020 « Article No.: 24 « Pages 1-6 » https://doi.org/10.1145/3382025.3414979

Published: 19 October 2020 Publication History. M) Check for updates

0 ABSTRACT
Microservices are deployable software artifacts that combine a set of business features and
expose them to other microservices. Ideally, the reuse and interchanging of microservices should
be easy as they are supposed to be independent of each other, both conceptually and
technologically. Selecting a service to fulfill a given feature (e.g., managing a cart in a website)
recalls the way Software Product Lines (SPL) allow variability. However, in practice, interchanging
microservices requires knowing the features that the services propose, how they communicate
with other services and their types. In this work, we propose to analyze service dependencies as
feature dependencies, at the feature, structural, technological, and versioning level, to assess the
interchangeability of services. We analyze six community-selected use-cases and report that

services are non-interchangeable systematically.

RESEARCH-ARTICLE , in é f
Variability management: re-engineering microservices with
delta-oriented software product lines

Authors: Maya R. A. Setyautami, Hafiyyan S. Fadhlillah, Daya Adianto Ichlasul Affan, Ade Azurat Authors
Info & Claims

SPLC '20: Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A - Volume A « October
2020 « Article No.: 23 « Pages 1-6 « https://doi.org/10.1145/3382025.3414981

Published: 19 October 2020 Publication History M) Cheok for updates
o T
1 ABSTRACT

Combining microservices and software product line engineering (SPLE) is a challenge in variability
management. This paper proposes a solution to that challenge by re-engineering existing webshop
systems into a product line application. We first perform feature identification to analyze the
features of subject systems. We introduce a mechanism that models the variability and designs a
software product line architecture based on existing features. We use a UML diagram with the
UML-DOP profile to abstract microservice variability in SPLE. Then, a transformation into a product
line application is conducted to generate running applications based on selected features. We

utilize a preliminary framework of microservice variability based on delta-oriented programming.

https://variability-challenges.github.io/2020/Microservices/index.html

VM FOR GLOUD-BASED SYSTEMS

e How far are we?
o Do we (this community) have the solutions for dealing with

variability in cloud-based systems?
m Design methods, tools, variability mechanisms, etc.
o Can the industry benefit of having cloud-based software product
lines?
m E.g,reuse, mass customization, reduce cost, etc.
o Are there new challenges due to the cloud environment (large
space, distributed, asynchronous)?
m E.g.chaos engineering
o What are the best practices (what to teach)?

FEATURE FLAGS

Why You Should Use Feature
Flags in a Microservices
Architecture

October 20, 2023 - 7 min read

Emil Kovacevi¢
@ Code hard, debug harder.
Microservices Architecture is a revolutionary approach to software development that empowers

applications to scale and evolve with unparalleled flexibility. But: How do feature flags help in this
dynamic landscape of microservices?

Feature Flags
]

Microservices
Architecture

Benefits of Using Feature Flags in a
Microservices Architecture

e Independent Development of Features

e Risk Reduction and Releases Control

e Enhanced User Experience and Testing
Capabilities

e 7 Customization?

What are Feature Flags?

Feature flags, also known as feature toggles, are a technique used in software development to enable
or disable certain Features in an application. By using feature flags, developers can easily turn

features on or off at runtime without code re-deployment.

https://configcat.com/blog/2023/10/20/Feature-flag-implementation-microservices-architecture/

10

FEATURE FLAGS

SHORT-PAPER OPEN ACCESS , in é f
Capture the Feature Flag: Detecting Feature Flags in Open-
Source

Authors: Jens Meinicke, 2 Juan Hoyos, ° Bogdan Vasnsscu,. Christian Kastner Authors Info & Claims

MSR '20: Proceedings of the 17th International Conference on Mining Software Repositories » june 2020 « Pages 169-173
« https://doi.org/10.1145/3379597.3387463

Published: 18 September 2020 Publication History M) Check for updates

99 5 ~* 5¢ Empirical Software Engineering (2021) 26: 1
https://doi.org/10.1007/510664-020-09901-z

1 ABSTRA
Featur | Chesksoy
boole: Software development with feature toggles: practices
“mn ysed by practitioners
featur|
comm
oreser R€ZVaN Mahdavi-Hezaveh! ® . Jacob Dremann’ - Laurie Williams’

open-¢
Accepted: 23 September 2020 / Published online: 8 January 2021

charg) © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

multip
projec
benefi Abstract
sampl Background Using feature toggles is a technique that allows developers to either turn a
desira f€ature on or off with a variable in a conditional statement. Feature toggles are increasingly
T used by software companies to facilitate continuous integration and continuous delivery.
However, using feature toggles inappropriately may cause problems which can have a severe
impact, such as code complexity, dead code, and system failure. For example, the erroneous

RESEARCH-ARTICLE

RESEARCH-ARTICLE ~ PUBLIC ACCESS ¥Ying f

Exploring differences and commonalities between feature
flags and configuration options

Authors: Jens Meinicke, Chu-Pan Wong, ° Bogdan Vasilescu, . Christian Kastner Authors Info & Claims

ICSE-SEIP '20: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in
Practice » June 2020 « Pages 233-242 » https://doi.org/10.1145/3377813.3381366

Published: 18 September 2020 Publication History M) Check for updates

Yind f =

From feature models to feature toggles in practice

iftware share

Authors: & Jean-Marc Jézéquel, @) Jorg Kienzle, & Mathieu Acher Authors Info & Claims

Iractitioner

SPLC '22: Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume A » September is valuable,

2022 « Pages 234-244 « https://doi.org/10.1145/3546932.3547009

Published: 12 September 2022 Publication History LIRS e
esting). To
91 131 '} ” - G "DF srmed nine
hing
0 ABSTRACT 0 oth
Feature Toggles (often also referred to as Feature Flags) are a powerful technique, providing an .
alternative to maintaining multiple feature branches in source code. A condition within the code P —
enables or disables a feature at runtime, hence providing a kind of runtime variability resolution. ®.
Several works have already identified the proximity of this concept with the notion of Feature @
found in Software Product Lines. In this paper, we propose to go one step further in unifying these ‘
concepts to provide a seamless transition between design time and runtime variability resolutions.
We propose to model all the variability using a feature model. Then this feature model can be
partially resolved at design time (yielding an incomplete product derivation), the unresolved
variability being used to generate feature toggles that can be enabled/disabled at runtime. We first <

configuration

demonstrate these ideas on the toy example of the Expression Product Line, and then show how it

can scale to build a configurable authentication system, where a partially resolved feature model

can interface with popular feature toggle frameworks such as Togglz.

11

CALL TO AGTION 2!

- Establish(or define) the role of
reuse/customization in cloud-based system

- Collaboration: cross-area research

between cloud + SPL engineering
- What else?

SOFTWARE ENGINEERING AT NCSU

Home Contact

Software
Engineering at
NCSU

Accelerate your SE career, in industry, in research.

IMPLEMENTATION ~ DEVELOPMENT

\,-LQ

m X
e ANALYZE
2@& /4.

PLANNING

m VALIDATION AND
TESTING VERIFICATION

13

NC STATE
UNIVERSITY

MAKING SOFTWARE DEVELOPMENT BETTER

= 8 Wesley K. G. Assuncgao
@ https://wesleyklewerton.github.io/
« @wesleyklewerton

RESEARGH OVERVIEW

