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Abstract—The modernization of monolithic legacy systems
with microservices has been a trend in recent years. As part
of this ization, i ifying microservice i start-
ing from legacy code is challenging, as maintainers may con-
sider many criteria simultaneously. Multi-objective search-based

previous studies are, in fact, considered by maintainers; and
(iii) the maintainer profiles , the preferred granularity for
microservice, highly affect decisions. Finally, we observed
the maintainers needed little effort in adjusting the automatically
identified microservices to make them adoptable. In addition to

approaches sent a tate-of-the-art_solution to

a promising potential of search-based approaches to
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Reuse opportunities are considered on microservice ex- _

traction, albeit not unanimously. Reuse also achieved a
median of 4 in the responses. One participant mentioned
the practice of reuse “is indeed a key driving factor for
the migration to microservices architecture; it is important
to promote the reuse of the extracted microservice by other
systems”. However, the relevance of reuse was not unanimous.
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Feature: A prominent or distinctive user-visible aspect, quality, or characteristic of

a software system or systems.

A feature is a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option.

Kang et al.; Kastner and Apel




CLOUD-BASED SOFTWARE

Microservices

[

With a microservices architecture, an application is built as independent components
that run each application process as a service. These services communicate via a
well-defined interface using lightweight APIs. Services are built for business
capabilities and each service performs a single function.

https://aws.amazon.com/microservices/




FEATURES AND MICROSERVICES

Features as building bIocks
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VARIABILITY MANAGEMENT + MICROSERVIGES
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Variability management meets microservices: six challenges
of re-engineering microservice-based webshops
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1. Feature Identification and Mapping

2. Variability Modeling

3. Microservice-Based SPL Architecture
S et 4. Microservice Interchanging
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Nagsa . Deep Customization of Microservices
. Re-Engineering a Microservice-Based SPL

A microservice implements a small unit of functionality that it provides through a network using
lightweight protocols. So, microservices can be combined to fulfill tasks and implement features of
a larger software system---resembling a variability mechanism in the context of a software product
line (SPL). Microservices and SPLs have similar goals, namely facilitating reuse and customizing, but
they are usually employed in different contexts. Any developer who has access to the network can
provide a microservice for any task, while SPLs are usually intended to implement features of a

specific domain. Due to their different concepts, using microservices to implement an SPL or

Problem Space ! Solution Space
adopting SPL practices (e.g., variability management) for microservices is a challenging cross-area £ 1 Domain implementation

H |
both techniques can complement each other, and thus tackling this é, kmm, Mopping
or organizations that employ either technique. In this paper, we E

3 (models source code,
advancing in this direction, and sketch six concrete challenges to e - | : :
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nends
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'rve as a starting point for future research in this cross-area research @

Application engineering

concepts of one area are reinvented in the other.

https://doi.org/10.1145/3382025.3414942 !




M + MS CHALLENGE SOLUTIONS

RESEARCH-ARTICLE ’ in 6 f
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study of six reference architectures
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0 ABSTRACT
Microservices are deployable software artifacts that combine a set of business features and
expose them to other microservices. Ideally, the reuse and interchanging of microservices should
be easy as they are supposed to be independent of each other, both conceptually and
technologically. Selecting a service to fulfill a given feature (e.g., managing a cart in a website)
recalls the way Software Product Lines (SPL) allow variability. However, in practice, interchanging
microservices requires knowing the features that the services propose, how they communicate
with other services and their types. In this work, we propose to analyze service dependencies as
feature dependencies, at the feature, structural, technological, and versioning level, to assess the
interchangeability of services. We analyze six community-selected use-cases and report that

services are non-interchangeable systematically.
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Variability management: re-engineering microservices with
delta-oriented software product lines
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1 ABSTRACT

Combining microservices and software product line engineering (SPLE) is a challenge in variability
management. This paper proposes a solution to that challenge by re-engineering existing webshop
systems into a product line application. We first perform feature identification to analyze the
features of subject systems. We introduce a mechanism that models the variability and designs a
software product line architecture based on existing features. We use a UML diagram with the
UML-DOP profile to abstract microservice variability in SPLE. Then, a transformation into a product
line application is conducted to generate running applications based on selected features. We

utilize a preliminary framework of microservice variability based on delta-oriented programming.

https://variability-challenges.github.io/2020/Microservices/index.html




VM FOR GLOUD-BASED SYSTEMS

e How far are we?
o Do we (this community) have the solutions for dealing with

variability in cloud-based systems?
m Design methods, tools, variability mechanisms, etc.
o Can the industry benefit of having cloud-based software product
lines?
m E.g,reuse, mass customization, reduce cost, etc.
o Are there new challenges due to the cloud environment (large
space, distributed, asynchronous)?
m E.g.chaos engineering
o What are the best practices (what to teach)?




FEATURE FLAGS

Why You Should Use Feature
Flags in a Microservices
Architecture

October 20, 2023 - 7 min read

Emil Kovacevi¢
@ Code hard, debug harder.
Microservices Architecture is a revolutionary approach to software development that empowers

applications to scale and evolve with unparalleled flexibility. But: How do feature flags help in this
dynamic landscape of microservices?

Feature Flags
]

Microservices
Architecture

Benefits of Using Feature Flags in a
Microservices Architecture

e Independent Development of Features

e Risk Reduction and Releases Control

e Enhanced User Experience and Testing
Capabilities

e 7 Customization?

What are Feature Flags?

Feature flags, also known as feature toggles, are a technique used in software development to enable
or disable certain Features in an application. By using feature flags, developers can easily turn

features on or off at runtime without code re-deployment.

https://configcat.com/blog/2023/10/20/Feature-flag-implementation-microservices-architecture/
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FEATURE FLAGS

SHORT-PAPER  OPEN ACCESS , in é f
Capture the Feature Flag: Detecting Feature Flags in Open-
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multip
projec
benefi Abstract
sampl Background Using feature toggles is a technique that allows developers to either turn a
desira f€ature on or off with a variable in a conditional statement. Feature toggles are increasingly
T used by software companies to facilitate continuous integration and continuous delivery.
However, using feature toggles inappropriately may cause problems which can have a severe
impact, such as code complexity, dead code, and system failure. For example, the erroneous

RESEARCH-ARTICLE
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Exploring differences and commonalities between feature
flags and configuration options
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From feature models to feature toggles in practice
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0 ABSTRACT 0 oth
Feature Toggles (often also referred to as Feature Flags) are a powerful technique, providing an .
alternative to maintaining multiple feature branches in source code. A condition within the code P —
enables or disables a feature at runtime, hence providing a kind of runtime variability resolution. ®.
Several works have already identified the proximity of this concept with the notion of Feature @
found in Software Product Lines. In this paper, we propose to go one step further in unifying these ‘
concepts to provide a seamless transition between design time and runtime variability resolutions.
We propose to model all the variability using a feature model. Then this feature model can be
partially resolved at design time (yielding an incomplete product derivation), the unresolved
variability being used to generate feature toggles that can be enabled/disabled at runtime. We first <

configuration

demonstrate these ideas on the toy example of the Expression Product Line, and then show how it

can scale to build a configurable authentication system, where a partially resolved feature model

can interface with popular feature toggle frameworks such as Togglz.
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CALL TO AGTION 2!

- Establish(or define) the role of
reuse/customization in cloud-based system

- Collaboration: cross-area research

between cloud + SPL engineering
- What else?
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