
Philipp Chrszon

Institute for Software Technology, German Aerospace Center (DLR), Braunschweig

FOSD Meeting 2024

COMBINING FEATURE
ANNOTATIONS AND
SUPERIMPOSITION IN
FORMAL MODELING

Annotative and Compositional Approaches
for implementing features

2

Annotative Compositional

• Mark fragments of

feature-specific code

• Derive variant using projection

• Examples:
• #ifdef
• Featured Transition Systems

• Arbitrary granularity, construction of

family-model straightforward

• Modularization difficult, poor traceability

• Implement features as

distinct modules

• Create variant using composition

• Examples:

• Jak

• fSMV

• Feature modularity,

easy separation of concerns

• Limited granularity, construction of

family model challenging

Goal: Combine annotative and compositional approaches in formal modeling to enable:

▪ Fine-grained modifications

▪ Feature modularization

▪ Family-based analysis and dynamic reconfiguration

Formal Behavioral Modeling
using guarded commands

3

[action] guard → update

Boolean condition

over variables
Variable updates

Example: 2-bit counter

P1:

[tick] (c < 3) → (c’ = c + 1)

[tock] (c = 3) → (c’ = 0)

[reset] r ∧ tt → (c’ = 0)

P2:

[tock] tt → (b’ = ¬b)

0

1

2

3

2

1

0

3

tick

tock

tick

tick

tick tick

tick
tock

tocktock

[action] f-guard ∧ guard → update

Variable updates
Boolean condition

over variables

Boolean condition

over features

r / reset

r / reset

P1 || P2:

[tick] (c < 3) → (c’ = c + 1)

[tock] tt ∧ (c = 3) → (c’ = 0) ∧ (b’ = ¬b)

The ProFeat Language
annotative feature-oriented modeling

4

f1

f2 f3

f4 f5

feature model

feature modules
(parallel composition)

m1 m4m3m2|| ||||

variability module
(dynamic reconfiguration)

root feature
all of optional Reset;
modules counter;

endfeature

module counter
c : [0..3] init 0;
[tick] c < 3 -> (c’ = c + 1);
[tock] c = 3 -> (c’ = 0);
[reset] active(Reset) -> (c’ = 0);

endmodule

[step] (active(executive) & num_floorreq(top)>0
? (cabin_pos=top ? 1 : 0)
: (active(ttf) & (load/size > 2/3)

? num_cabinreq(k)
: num_cabinreq(k) + num_floorreq(k)

)) > 0 |
!(active(overload) => (load <= size)) |
!(active(parking) & idleing => !(cabin_pos=eg))
-> (cabin_open' = true);

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier: “ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking”,

Formal Aspects of Computing, Vol. 30, No. 1, pp. 45-74, 2018.

Composition by Superimposition
modifying guarded commands using delta programs

▪ Superimposition describes how a system or module is

modified upon composition

▪ Extension by adding commands to module

▪ Modification and removal via modification function:

𝑚 ∶ 𝐶𝑚𝑑 ⇀ 2𝐶𝑚𝑑

▪ Example: saturating counter

5

P1:

[tick] (c < 3) → (c’ = c + 1)

[tock] (c = 3) → (c’ = 0)

Δ:
𝑚(“[tock] (c = 3) → (c’ = 0)”) = “[tick] (c = 3) → true”

▪ Combination of superimposition and annotative approach by allowing

annotations in feature modules and deltas

Clemens Dubslaff: “Compositional Feature-Oriented Systems“, Software Engineering and Formal Methods (SEFM), 2019.

Clemens Dubslaff: “Quantitative Analysis of Configurable and Reconfigurable Systems”, PhD thesis, TU Dresden, 2022.

Combining Feature Annotations and Superimposition
in the ProFeat language

6

feature Elevator
module cabin
pos : [0..5] init 0;
dir : {UP, DOWN} init UP;
door : {CLOSED, OPEN} init CLOSED;

[tick] door = CLOSED & dir = UP & req_above ->
(pos' = pos + 1) & (dir' = if pos = 4 then DOWN else UP);

[tick] door = CLOSED & dir = DOWN & req_below ->
(pos' = pos - 1) & (dir' = if pos = 1 then UP else DOWN);

endmodule
endfeature

[tick] active(Parking) & door = CLOSED & num_req_total = 0 & pos > 0 ->
(pos' = pos - 1) & (dir' = DOWN);

[tick] active(Parking) & door = CLOSED & num_req_total = 0 & pos = 0 ->
(door' = OPEN);

endmodule
endfeature

endmodule
endfeature

feature Parking
extend module Elevator.cabin
[tick] door = CLOSED & num_req_total = 0 & pos > 0 -> (pos' = pos-1) & (dir’ = DOWN);
[tick] door = CLOSED & num_req_total = 0 & pos = 0 -> (door' = OPEN);

endmodule
endfeature

endmodule
endfeature

feature Parking
change module Elevator.cabin

rewrite floor_buttons[0] to (if num_req_total = 0 then true else floor_buttons[0]);
endmodule

endfeature

M. Plath, M. Ryan: “Feature Integration using a Feature Construct”, Sci. Comp. Program. 41-1, pp. 53-84, 2001.

endmodule
endfeature

feature Parking
change module Elevator.cabin

rewrite floor_buttons[0] to
(if !active(Executive) & num_req_total = 0 then true else floor_buttons[0]);

endmodule
endfeature

Discussion
design decisions and open questions

▪ Unify or distinguish the two kinds of feature modules?

1. Adding new parallel modules

2. Modify existing parallel modules using superimposition

▪ Implicit or explicit interfaces (variables, actions) in delta modules?

▪ Superimposition is order-dependent, how is this resolved?

▪ Derive from dependency graph?

▪ Derive from feature model?

▪ Explicit definition?

▪ Interaction between rewrites and function calls: Should rewrites enter

function bodies?

7

Impressum

Thema: Combining Feature Annotations and Superimposition in

Formal Modeling

FOSD Meeting 2024

Datum: 09.04.2024

Autor: Philipp Chrszon

Institut: Softwaretechnologie

Bildcredits:

8

