Detecting Performance-Relevant Changes in Configurable Software Projects

Sebastian Böhm

Florian Sattler

Sven Apel

Performance Regression Analysis

Challenge: Configurability

- 23 revisions
- ✤ 576 configurations
- ca. 155h analysis time (ca. 7h per revision)
- only one workload

Performance Regression Analysis of CSS

Goal: Reduce costs of regression analysis as much as possible.

- Reduction in the time dimension
 - > Only analyze revision if change could affect performance at all
- Reduction in the space dimension
 - > Only consider affected portion of the configuration space for analysis

Approach

Step 1 (time dimension):

- Does a given change interact with performance-relevant code?
- Performance-relevant interaction
 - Data-flow based change-impact analysis

Approach

Step 2 (space dimension):

- What *features* participate in performance-relevant interactions?
 - Find features on the data-flow paths of a performance-relevant interaction
- Use information to restrict configuration-space
 - e.g., guide sampling approaches to focus on specific configurations

		int iterations - quality				
		- Int iterations = quality;				
		+ int iterations = quality * 2;				
1		int getIterations(int quality, bool strong) {				
2	Y	int iterations = quality * 2;				
3	\mathbf{O}_{0}^{0}	🗯 if (strong) { iterations *= iterations; }				
4		return iterations;				
5		}				
6						
7	<pre>void compress(vector<int> data, int iterations) {</int></pre>					
8	for (int $j = 0$; $j < iterations$; ++ j) {					
9		// complex computation on data				
10	_	}				
11		}				
12						
13		void doStuff(vector <int> data, int guality,</int>				
14		bool strong, /* StrongCompression */				
15		bool verbose /* Verbosity */) {				
16		int iterations = getIterations(guality, strong);				
17	0	if (verbose) { cout << "Iterations: " << iterations: }				
18	Q	compress(data_iterations);				
10		}				
17		1				

Research Questions

RQ₁: Do performance-relevant interactions indicate performance-relevant changes?

RQ₂: Does our approach correctly identify relevant features?

RQ₃: How much analysis effort can be potentially saved with the information provided by our approach?

Subject systems

Change of Representation

Baseline

Baseline:

- regression if >0 configurations with diff >5% of runtime
- ✤ 4 "strong" regressions
- 12 "weak" regressions
 (possibly measurement noise)

RQ1: Detecting Regressions

Performance Differences - bzip2 Classification: Configurations LOEgoddee 75c3dfee12 Adeleleb 01¹²10¹⁰ of barry geee -9fdbb12e8 ebe990213 Revisions

Results for bzip2:

- 5 revisions classified as potential regressions
- ✤ 4 analysis errors
- 2 strong regressions missed

	Recall	Precision
only strong regressions	0.50	0.4
all regressions	0.25	0.8

RQ2: Finding Relevant Features

Performance Differences - bzip2 Classification: Features: Ø Ø Configurations 25-23Heei2 Labele2est Loegoddee ATT DECTOR TORING TO THE TOP OF THE TOP TO THE TOP OF T ashafspeee 2916007288 epe990213 Revisions

Results for bzip2:

- Important features often not recognized (i.e., compression)
- Limitation of feature detection algorithm

RQ3: Potential Savings

Results for bzip2:

Not viable with available data

Open Questions

- RQ1: How should we classify regressions?
 - Threshold (absolute or relative)
 - Statistical test
 - Set of affected features is not empty (see below)
- RQ2: How to identify relevant features in the baseline?
 - Idea 1: Check if configurations in restricted space show regression
 - Idea 2: Use recursive random search¹ on diffs to find features with high influence

Example

Example

