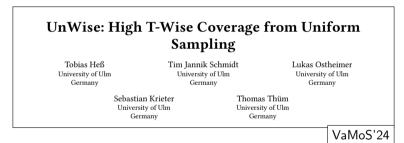
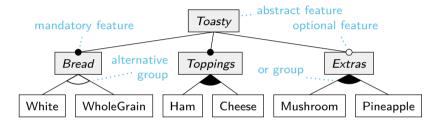
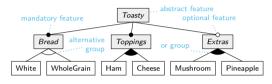


High T-Wise Coverage From Uniform Sampling


FOSD'24 | Tobias Heß, <u>Tim Jannik Schmidt</u>, Lukas Ostheimer, Sebastian Krieter, Thomas Thüm | 9.-12.04.2024




Feature Models

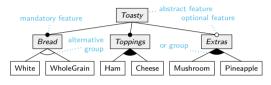
¬Pineapple ··· cross-tree constraint

Valid Configuration: $c_1 = \{White, Cheese, Ham, Mushroom\}$

Sampling Methods



¬Pineapple … cross-tree constraint


Valid Configuration: $c_1 = \{White, Cheese, Ham, Mushroom\}$

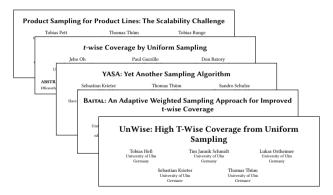
Uniform Sampling

Idea: Draw configurations at random from a urn of all configurations.

Sampling Methods

¬Pineapple … cross-tree constraint

Valid Configuration: $c_1 = \{White, Cheese, Ham, Mushroom\}$

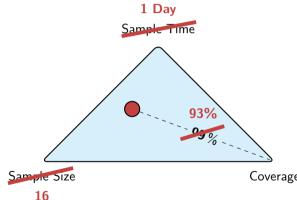

T-Wise Sampling

Idea: Cover all valid combinations of interactions between t features. **Pair-Wise interactions for Ham & Cheese:** $H \land C$ $H \land \neg C$ $\neg H \land C$ $\neg H \land \neg C$

Sample: $\{c_1, c_2, c_3\}$ Pair-Wise Coverage: 100%

Find all errors caused by interactions of size 2

The Story so far


Evaluate papers using 49 real-world feature models + Post Processing

Results

Sampler	No post-processing			
	Size	Cov		
Yasa (t = 2)	272 ±744.7	99.98 ±0.1 %		
Baital (t = 2)	$484{\pm}55.9$	$99.65{\pm}1.5\%$		
Quicksampler ($s = 1024$)	781 ± 500.4	51.58±16.3%		
Spur (s = 1024)	<u>982</u> ±145.2	$\underline{88.91}{\pm}11.7\%$		

- ► YASA as clear winner
 - even without post processing
 - Smaller Samples
 - Larger Coverage
- ► Uniform Sampling: Better than expected

Trade-Off & Problem in Practice

Test them all, is it worth it? Assessing configuration sampling on the JHipster Web development stack

Axel Halin¹ · Alexandre Nuttinck² · Mathieu Acher³ · Xavier Devroey⁴ ⁽¹⁾ · Gilles Perrouin⁵ · Benoit Baudry⁶

A Comparison of 10 Sampling Algorithms for Configurable Systems

Flávio Medeiros	Christian K	University	Márcio Ribeiro
Fed. Univ. of Campina Grande	Carnegie Mellon		Federal University of Alagoas
Paraiba, Brazil	Pittsburgh, Penns		Maceió, Alagoas, Brazil
Fed. Univ. of	t Gheyi Campina Grande xa, Brazil	Sven Universitä Passau, 0	it Passau

Coverage \Rightarrow 100% 4/5/6-wise needed

Open Questions

Current State

- What is the baseline?
- We evaluated: 93% 2-wise with restrictions \rightarrow Enough?

The end of Uniform Sampling in Fault Detection? Is T-Wise the way to go?

Planned Thesis

Configuration: {White, ¬Ham, Cheese, ¬Mushroom, ...}

1 #ifdef Ham
2 int f(int x) {...}
3 #endif
4 #ifdef Cheese
5 int g() {
6 return f(42);
7 }
8 #endif

Compile Error

```
void h(int x) {
              cout << (2/x) << endl;
2
 3
     int main() {
              int x = 1;
5
              #ifdef Mushroom
              x = x + 1;
              #endif
 8
              #ifdef Cheese
9
              x = x - 1:
10
              #endif
11
              h(x);
12
13
```

Runtime Error Error Masking in SPLs

Planned Thesis

Error Masking in Software Product Lines

Significance

- Error Masking affects all Sampling techniques
- Problem might be **bigger** than we think
- Looks at the **Solution Space**
- Apply to real world fault detection

What do <u>YOU</u> think?

Hell, <u>Tim Schmidt</u> , Oathelmer, Kristen, Thim. High T-Wise Coverage From Uniform Sampling FOSD'24						
Results						
	Sampler	No post-processing		1		
	Yasa (t - 2)	Size 272±744.7	Cov 99.98±0.1%			
	Baital (t = 2) Quicksampler (s = 1024) Spur (s = 1024)	484±55.9 781±500.4 982±145.2	99.65±1.5% 51.58±16.3% 88.91±11.7%			
► YASA as clear		202-143.2	00.01.011.7 70	1		
 even without 	t post processing					
Smaller San	ples					
Larger Coverage						
 Uniform Sample 	ing: Better than expected					

