
High T-Wise Coverage From Uniform Sampling
© Thomas Thüm

FOSD’24 | Tobias Heß, Tim Jannik Schmidt, Lukas Ostheimer, Sebastian Krieter, Thomas Thüm | 9.-12.04.2024

1 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

UnWise: High T-Wise Coverage from Uniform
Sampling

Tobias Heß
University of Ulm

Germany

Tim Jannik Schmidt
University of Ulm

Germany

Lukas Ostheimer
University of Ulm

Germany

Sebastian Krieter
University of Ulm

Germany

Thomas Thüm
University of Ulm

Germany

Abstract
Configuration spaces of industrial product lines are typically
too large to be tested exhaustively. Therefore, testing in
practice is often carried out on samples, sets of configurations
which satisfy the requirements of the testing scenario. For t-
wise sampling, the objective is to cover all t-wise interactions
between configurable options with as few configurations as
possible. However, a trade-off needs to be made between
t, sampling time, sample size, and achieved coverage. In
addition, it is infeasible for larger systems to even compute
the set of all 2-wise interactions in practicable time. In this
work, we reevaluate the performance of uniform samplers in
terms of 2-wise coverage and come to a more positive result
than previous research. We also present completion and
reduction algorithms that greatly improve said performance.
As a baseline for comparison, we additionally evaluate the
two state-of-the-art dedicated t-wise samplers Baital and
YASA. In doing so, we are the first to evaluate and compare
these samplers on a large set of industrial feature models.

CCS Concepts: • Software and its engineering→ Soft-
ware product lines.

Keywords: Uniform Sampling, T-Wise Sampling, Feature-
Model Analysis, Industrial Feature Models

ACM Reference Format:
Tobias Heß, Tim Jannik Schmidt, Lukas Ostheimer, Sebastian Kri-
eter, and Thomas Thüm. 2024. UnWise: High T-Wise Coverage
from Uniform Sampling. In 18th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS 2024),
February 7–9, 2024, Bern, Switzerland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3634713.3634716

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
VaMoS 2024, February 7–9, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0877-0/24/02.
https://doi.org/10.1145/3634713.3634716

1 Introduction
Contemporary industrial product lines commonly have thou-
sands of configurable options (i.e., features) which give way
to enormous configuration spaces (in recent work we en-
countered models with up to 101500 valid configurations [34]).
As this makes exhaustive testing infeasible [13], sampling
techniques are used to create sets of representative configu-
rations of manageable size (i.e., samples) [32]. For purposes
such as combinatorial interaction testing [7, 24, 25], one is
interested in covering as many interactions as possible with
the configurations in the sample. A 𝑡-wise coverage of 100 %
means that every interaction between 𝑡 features is present
in at least one configuration in the sample (i.e., covered).
A number of specialized samplers have been developed

with the goal of achieving high to full 𝑡-wise coverage with
as few configurations as possible [2, 4, 17, 22, 29]. How-
ever, their time requirements [2, 21, 22, 29], yielded sam-
ple sizes [4, 29], or achieved coverages [4, 29] commonly
make them impractical when applied to real-world feature
models [31, 32]. For example, the state-of-the-art sampler
YASA is capable of sampling hard models such as Linux
2.6.28 [34, 36] within 30 minutes [22], achieves 100% 2-
wise coverage, but requires more than 500 configurations to
reach this coverage. For large but underconstrained models,
such as Automotive02, YASA fails to scale, as it, in essence,
needs to iterate over all valid 2-wise interactions and there-
fore takes days [22].

For scenarios such as continuous integration, where time
is at the essence and resources are limited, both a sampling
time of 30 minutes and sample size of 500 configurations are
impractical. In the case of JHipster, an open-source developer
framework for web applications and microservices, there are
only enough resources available to test 12 configurations per
commit [13]. In 2016, more than 36,000 kernels were build per
day for testing the Linux kernel [31], resulting in 25 configu-
rations being tested per commit on average.1 Therefore, we
propose to trade-off coverage for increased sampling speed
and reduced sample size, which in turn lowers the time and
resource requirements for testing.

1https://people.netfilter.org/hawk/presentations/ifdef2016/ifdef_
FOSD2016.pdf

VaMoS’24

2 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Feature Models

Toasty

Bread

White WholeGrain

Toppings

Ham Cheese

Extras

Mushroom Pineapple

mandatory feature optional feature

or group
alternative

group

abstract feature

¬Pineapple cross-tree constraint

Valid Configuration: c1 = {White, Cheese, Ham, Mushroom}

3 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Sampling Methods

Toasty

Bread

White WholeGrain

Toppings

Ham Cheese

Extras

Mushroom Pineapple

mandatory feature optional feature

or group
alternative

group

abstract feature

¬Pineapple cross-tree constraint

Valid Configuration: c1 = {White, Cheese, Ham, Mushroom}

Uniform Sampling
Idea: Draw configurations at random from a urn of all configurations.

c1 c2

c3

c4 c5

c6c7

4 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Sampling Methods

Toasty

Bread

White WholeGrain

Toppings

Ham Cheese

Extras

Mushroom Pineapple

mandatory feature optional feature

or group
alternative

group

abstract feature

¬Pineapple cross-tree constraint

Valid Configuration: c1 = {White, Cheese, Ham, Mushroom}

T-Wise Sampling
Idea: Cover all valid combinations of interactions between t features.
Pair-Wise interactions for Ham & Cheese: H ∧ C H ∧ ¬C ¬H ∧ C ¬H ∧ ¬C

Sample: {c1, c2, c3} Pair-Wise Coverage: 100%

Find all errors caused by interactions of size 2?

5 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

The Story so far

Product Sampling for Product Lines: The Scalability Challenge
Tobias Pett

t.pett@tu-braunschweig.de
TU Braunschweig

Germany

Thomas Thüm
t.thuem@tu-braunschweig.de

TU Braunschweig
Germany

Tobias Runge
tobias.runge@tu-braunschweig.de

TU Braunschweig
Germany

Sebastian Krieter
sebastian.krieter@ovgu.de
University of Magdeburg

Germany

Malte Lochau
malte.lochau@es.tu-darmstadt.de

TU Darmstadt
Germany

Ina Schaefer
i.schaefer@tu-braunschweig.de

TU Braunschweig
Germany

ABSTRACT
Quality assurance for product lines is often infeasible for each prod-
uct separately. Instead, only a subset of all products (i.e., a sample)
is considered during testing such that at least the coverage of cer-
tain feature interactions is guaranteed. While pair-wise interaction
sampling only covers all interactions between two features, its gen-
eralization to t-wise interaction sampling ensures coverage for all
interactions among t features. However, sampling large product
lines poses a challenge, as today’s algorithms tend to run out of
memory, do not terminate, or produce samples, which are too large
to be tested. To initiate a community effort, we provide a set of
large real-world feature models with up-to 19 thousand features,
which are supposed to be sampled. The performance of sampling
approaches is evaluated based on the CPU time and memory con-
sumed to retrieve a sample, the sample size for a given coverage
(i.e. the value of t) and whether the sample achieves full t-wise cov-
erage. A well-performing sampling algorithm achieves full t-wise
coverage, while minimizing the other properties as best as possible.

CCS CONCEPTS
• Software and its engineering → Software product lines.

KEYWORDS
software product lines, product line testing, product sampling, real-
world feature models

ACM Reference Format:
Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau,
and Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability
Challenge. In 23rd International Systems and Software Product Line Conference
- Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3336294.3336322

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336322

1 INTRODUCTION
Modern software engineering struggles with increasing require-
ments regarding finer customization and faster time to market. A
common solution is to design systems as software product lines.
This way a collection of customized products can be build based on
a common core [3]. However, the variability contained in a software
product line poses a potentially large number of possible products.
Analyzing all products individually is infeasible in most cases [30].
Therefore, quality assurance is often performed on a small subset
of product configurations, which presumably covers a sufficient
amount of functionality of the product line.

A common technique to build a subset of products is combina-
torial interaction sampling (CIT) [17]. The goal of combinatorial
interaction testing is to build samples, which achieve t-wise interac-
tion coverage between sets of features. T-wise interaction coverage
requires that every possible combination of t features is covered
by at least one product in the sample. Commonly used coverage
criteria include feature-wise coverage (t = 1), pair-wise coverage
(t = 2), or three-wise coverage (t = 3).

Over the years, many sampling algorithms have been developed
to generate samples that achieve feature interaction coverage. To
generate a sample different input artifacts such as a feature model,
implementation artifacts [11, 23, 25] or expert knowledge [7, 9] can
be used [30]. However, the majority of sampling algorithms uses
a feature model as single input artifact [30]. Hence, our challenge
focuses on sampling algorithms using a feature as single input for
sampling. Sampling algorithms drastically reduce the number of
products to be tested, compared to testing all possible products
individually. However, when applied to large product lines from
real-world applications with hundreds or even thousands of fea-
tures, they often run out of memory, do not terminate, produce
unnecessary large samples to test, or the calculation takes to much
time [4, 8]. Facing those scalability issues is a recent challenge of
product line research [15].

To assure the quality of real-world product lines is already a
challenging task by considering only one version. However, a prod-
uct line evolves throughout its whole life cycle, based on changing
environments or newly required functionality [19]. To assure that
no unwanted behavior was introduced by the changes, a new sam-
ple needs to be generated for each product line version. Hence, the
sampling scalability challenge needs to be handled again for each
product line version. Until now, no sampling algorithm considers
the evolution of product lines or previously calculated samples to

t-wise Coverage by Uniform Sampling
Jeho Oh

jeho@cs.utexas.edu
University of Texas at Austin

Austin, Texas, USA

Paul Gazzillo
paul.gazzillo@ucf.edu

University of Central Florida
Orlando, Florida, USA

Don Batory
batory@cs.utexas.edu

University of Texas at Austin
Austin, Texas, USA

ABSTRACT
Efficiently testing large configuration spaces of Software Product
Lines (SPLs) needs a sampling algorithm that is both scalable and
provides good t-wise coverage. The 2019 SPLC Sampling Challenge
provides large real-world feature models and asks for a t-wise
sampling algorithm that can work for those models.

We evaluated t-wise coverage by uniform sampling (US) the
configurations of one of the provided feature models. US means
that every (legal) configuration is equally likely to be selected. US
yields statistically representative samples of a configuration space
and can be used as a baseline to compare other sampling algorithms.

We used existing algorithm called Smarch to uniformly sample
SPL configurations. While uniform sampling alone was not enough
to produce 100% 1-wise and 2-wise coverage, we used standard
probabilistic analysis to explain our experimental results and to
conjecture how uniform sampling may enhance the scalability of
existing t-wise sampling algorithms.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Theory of computation → Automated reasoning.

KEYWORDS
software product lines, t-wise coverage, uniform sampling.
ACM Reference Format:
Jeho Oh, Paul Gazzillo, and Don Batory. 2019. t-wise Coverage by Uniform
Sampling. In 23rd International Systems and Software Product Line Conference
- Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3336294.3342359

1 INTRODUCTION
Software Product Lines (SPLs) are highly configurable. Building
blocks of SPL products are features that are increments of product
functionality. Each product of an SPL is defined by a unique set
of features called a configuration. A feature model declares each
feature and constraints among features, so that a user can identify
legal configurations with desired feature combinations [4]. As the
number of features increase, the size of the configuration space,
which is the set of all possible configurations, grows exponentially.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3342359

A large configuration space could have over a trillion (>1012)
configurations and is a challenge for testing, as testing every con-
figuration is infeasible. Instead, prior work produced a small set of
configurations to test selected features and their interactions. The
aim is to get a ‘high’ t-wise coverage, ideally meaning 100% of all
combinations of t features are covered by at least one configura-
tion of the set. Achieving 100% can be infeasible for large spaces.1
Common values for t include feature-wise (t=1), pair-wise (t=2),
and three-wise coverage (t=3).

Different approaches start with a feature model and derive sam-
ples for t-wise coverage [1, 2, 6, 9, 10]. However, they do not scale
well for many features and complex constraints, which limited their
applicability to the real-world SPLs. Thus, the proposed Challenge
[16] provides large real-world feature models and asks for a sam-
pling algorithm that can generate configuration sets with good
t-wise coverage for those models.

We explore t-wise coverage using uniform sampling (US) in this
paper. US ensures that all configurations in a configuration space
have equal probability of being selected, yielding a statistically rep-
resentative sample of the space. US can be used as a baseline against
which other sampling algorithms can compare as a benchmark [13].

Despite its utility, US for large SPLs was considered infeasible
until recently [11, 13]. Prior work tried different methods to make
sampling as random as possible, but none achieved US for large
SPLs. We use a recently developed algorithm called Smarch [8], the
first to perform US of configuration spaces of size 10245. Smarch
utilizes a #SAT solver, which counts the number of solutions to a
propositional formula [15]. We believe we are the first to explore
t-wise coverage of US with probabilistic analyses to explain its
coverage results.

Our contributions to the 2019 SPLC Sampling Challengeare:
• Demonstration of t-wise coverage that can be achieved by

US; and
• Probabilistic analysis of configuration spaces that predicts
the t-wise coverage by US and that may be useful for devel-
oping a practical t-wise sampling algorithm.

2 SMARCH: A US ALGORITHM
Smarch [8] is a US algorithm for SPLs based on a #SAT solver.
Let ϕ be the propositional formula of a feature model [3]. A #SAT
solver can count the number of configurations in ϕ’s configuration
space, namely |ϕ |. (Each solution to ϕ is a configuration, and each
configuration is a solution to ϕ). A #SAT solver extends a satisfia-
bility solver by associating the number of solutions with each truth
assignment [5]. Smarch uses sharpSAT [15], a state-of-the-art #SAT
solver.

1Section 4 shows that uniform sampling alone will not provide 100% coverage unless
the sample set is approximately the size of the configuration space.

YASA: Yet Another Sampling Algorithm
Sebastian Krieter

University of Magdeburg
Magdeburg, Germany

Harz University of Applied Sciences
Wernigerode, Germany

Thomas Thüm
University of Ulm
Ulm, Germany

Sandro Schulze
University of Magdeburg
Magdeburg, Germany

Gunter Saake
University of Magdeburg
Magdeburg, Germany

Thomas Leich
Harz University of Applied Sciences

Wernigerode, Germany

ABSTRACT
Configurable systems allow users to derive customized software
variants with behavior and functionalities tailored to individual
needs. Developers of these configurable systems need to ensure that
each configured software variant works as intended. Thus, software
testing becomes highly relevant, but also highly expensive due to
large configuration spaces that grow exponentially in the number
of features. To this end, sampling techniques, such as 𝑡-wise inter-
action sampling, are used to generate a small yet representative
subset of configurations, which can be tested even with a limited
amount of resources. However, even state-of-the-art 𝑡-wise interac-
tion sampling techniques do not scale well for systems with large
configuration spaces. In this paper, we introduce the configurable
technique YASA that aims to be more efficient than other existing
techniques and enables control over trading-off sampling time and
sample size. The general algorithm of YASA is based on the existing
technique IPOG, but introduces several improvements and options
to adapt the sampling procedure to a given configurable system. We
evaluate our approach in terms of sampling time and sample size
by comparing it to existing 𝑡-wise interaction sampling techniques.
We find that YASA performs well even for large-scale system and
is also able to produce smaller samples than existing techniques.

KEYWORDS
Configurable System, Software Product Lines, T-Wise Sampling,
Product-Based Testing

ACM Reference Format:
Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2019. YASA: Yet Another Sampling Algorithm. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 10 pages.
https: //doi.org/10.1145/3377024.3377042

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VaMoS '20, February 5–7, 2020, Magdeburg, Germany
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-7501-6/20/02…$15.00
https://doi.org/10.1145/3377024.3377042

1 INTRODUCTION
Software testing is an important task in software engineering to
increase software quality and to check intended software behav-
ior [5, 38]. However, extensive testing can be quite costly and binds
resources that could be used in other phases of development. This
is especially an issue for testing of highly-configurable systems,
such as Software Product Lines (SPLs), whose functionality is deter-
mined by configurations, consisting of a set of options that can be
either set to true or to false. The resulting configuration space typi-
cally grows exponentially, regarding the number of configuration
options [12, 32].

A straight-forward testing strategy for SPLs is product-based
testing, in which the test cases of a system are executed for differ-
ent configurations [50]. As testing every possible configuration is
usually not feasible, sampling strategies, have been developed to
generate a small but representative set of products to test [42, 43].
One such sampling strategy is 𝑡-wise interaction sampling, which
aims to generate a small set of configurations that covers all possi-
ble interactions of 𝑡 configuration options (e.g., all selected, none
selected, only one selected, etc.) [10, 36]. Using 𝑡-wise interaction
sampling, developers can ensure that each possible combination of
𝑡 configuration options is indeed contained in at least one configu-
ration in the generated sample.

T-wise interaction sampling is a promising approach, because
even when using small values for 𝑡 (i.e., 𝑡 ∈ {2, 3}) it achieves effec-
tive results with a relatively small sample [1, 26, 36]. However, even
when using small values of 𝑡 and a state-of-the-art sampling algo-
rithm, sampling can take an infeasible amount of time, especially
regarding large-scale systems with thousands of features [44].

In this paper, we want to tackle the scalability problem of t-
wise interaction sampling for large-scale systems. To this end, we
introduce a new approach for t-wise interaction sampling that
aims to be efficient and more scalable and flexible than existing
approaches. For this, we focus on three improvements compared
to existing approaches. First, we generalize t-wise interaction sam-
pling to not only cover every possible t-wise feature interaction, but
a customized set of feature interactions. This allows to add domain
knowledge for a system to the sampling process making it more
efficient. Second, in our approach we apply heuristics, caching, and
precomputed data structures to increase its performance. Third, we
introduce additional parameters to adapt some of our used heuris-
tics to enable more control over the trade-off between sampling
time and sample size.

Baital: An Adaptive Weighted Sampling Approach for Improved
t-wise Coverage

Eduard Baranov
Université Catholique de Louvain

Belgium
eduard.baranov@uclouvain.be

Axel Legay
Université Catholique de Louvain

Belgium
Aalborg University

Denmark
axel.legay@uclouvain.be

Kuldeep S. Meel
National University of Singapore

Singapore
meel@comp.nus.edu.sg

ABSTRACT

The rise of highly configurable complex software and its widespread
usage requires design of efficient testing methodology. t-wise cov-
erage is a leading metric to measure the quality of the testing suite
and the underlying test generation engine.While uniform sampling-
based test generation is widely believed to be the state of the art
approach to achieve t-wise coverage in presence of constraints
on the set of configurations, such a scheme often fails to achieve
high t-wise coverage in presence of complex constraints. In this
work, we propose a novel approach Baital, based on adaptive
weighted sampling using literal weighted functions, to generate
test sets with high t-wise coverage. We demonstrate that our ap-
proach reaches significantly higher t-wise coverage than uniform
sampling. The novel usage of literal weighted sampling leaves open
several interesting directions, empirical as well as theoretical, for
future research.

CCS CONCEPTS

· Software and its engineering → Feature interaction; Soft-
ware product lines; Software testing and debugging.

KEYWORDS

Configurable software, t-wise coverage, Weighted sampling

ACM Reference Format:

Eduard Baranov, Axel Legay, and Kuldeep S. Meel. 2020. Baital: An Adap-
tive Weighted Sampling Approach for Improved t-wise Coverage. In Pro-

ceedings of the 28th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),

November 8ś13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409744

1 INTRODUCTION

The software has been one of the primary driving forces in the
transformation of humanity in the past half-century; in the mod-
ern world, software touches every aspect of modern lives ranging
from medical, legal, judicial to policy-making. The widespread and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409744

diverse usage has led to the design of highly configurable software
systems operating in diverse environments. Since software failures
can lead to catastrophic effects, adequate testing of configurable
systems is paramount. Testing of configurable systems adds com-
plexity on top of an already notoriously difficult problem of testing
standard software.

In the context of configurable systems, every configuration refers
to an assignment of values to different parameters. For the exposi-
tion, we will restrict our discussion to parameters that only take
binary values; the techniques proposed in this work are general
and applicable to parameters whose possible set of values form a
finite set, and the benchmarks employed in our empirical study
arise from such domains. The primary challenge in the testing of
configurable systems arising from the observation that bugs often
arise due to interactions induced by the combination of parameter
values. In the combinatorial testing literature, the term feature is
often used to indicate a given parameter value. One such example
is an extensive study by Abal, Brabranc, and Wasowski[1] that
identified 42 bugs caused by the feature combinations in the Linux
kernel. Furthermore, modeling of system and environment leads to
constraints over the possible set of configurations of interest.

Combinatorial testing, also known as combinatorial interaction
testing (CIT), has emerged as one of the dominant paradigms for
testing of configurable software wherein the focus is to employ tech-
niques from diverse areas to generate test suites to attain high cov-
erage. One of the widely used metrics is t-wise coverage, wherein
the focus is to achieve coverage of all combinations of features of
size t .

A fundamental problem in CIT is the generation of test-configura-
tion that seeks to maximise t-wise coverage, which is measured as
the fraction of feature combinations appearing in the test set out
of the possible valid feature combinations. The complexity of the
problem arises from the presence of constraints to capture the set
of invalid configurations. The holy grail of test generation in CIT
is the design of test generation methods that can handle complex
constraints, scale to systems involving thousands of features, and
achieve higher t-wise coverage. Since achieving high t-wise cover-
age can be infeasible for large values of t , the practitioners often
focus on small values of t ∈ {1, 2, 3}, wherein t = 1 corresponds to
achieving feature-wise coverage.

For long, uniform sampling has been viewed as a dominant
domain-agnostic paradigm to achieve higher t-wise coverage, as
demonstrated by theoretical and empirical analysis [41, 51]. As an
example, the accepted solution for SPLC 2019 challenge, Product
Sampling for Product Lines: The Scalability Challenge, was uniform

1114

UnWise: High T-Wise Coverage from Uniform
Sampling

Tobias Heß
University of Ulm

Germany

Tim Jannik Schmidt
University of Ulm

Germany

Lukas Ostheimer
University of Ulm

Germany

Sebastian Krieter
University of Ulm

Germany

Thomas Thüm
University of Ulm

Germany

Abstract
Configuration spaces of industrial product lines are typically
too large to be tested exhaustively. Therefore, testing in
practice is often carried out on samples, sets of configurations
which satisfy the requirements of the testing scenario. For t-
wise sampling, the objective is to cover all t-wise interactions
between configurable options with as few configurations as
possible. However, a trade-off needs to be made between
t, sampling time, sample size, and achieved coverage. In
addition, it is infeasible for larger systems to even compute
the set of all 2-wise interactions in practicable time. In this
work, we reevaluate the performance of uniform samplers in
terms of 2-wise coverage and come to a more positive result
than previous research. We also present completion and
reduction algorithms that greatly improve said performance.
As a baseline for comparison, we additionally evaluate the
two state-of-the-art dedicated t-wise samplers Baital and
YASA. In doing so, we are the first to evaluate and compare
these samplers on a large set of industrial feature models.

CCS Concepts: • Software and its engineering→ Soft-
ware product lines.

Keywords: Uniform Sampling, T-Wise Sampling, Feature-
Model Analysis, Industrial Feature Models

ACM Reference Format:
Tobias Heß, Tim Jannik Schmidt, Lukas Ostheimer, Sebastian Kri-
eter, and Thomas Thüm. 2024. UnWise: High T-Wise Coverage
from Uniform Sampling. In 18th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS 2024),
February 7–9, 2024, Bern, Switzerland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3634713.3634716

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
VaMoS 2024, February 7–9, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0877-0/24/02.
https://doi.org/10.1145/3634713.3634716

1 Introduction
Contemporary industrial product lines commonly have thou-
sands of configurable options (i.e., features) which give way
to enormous configuration spaces (in recent work we en-
countered models with up to 101500 valid configurations [34]).
As this makes exhaustive testing infeasible [13], sampling
techniques are used to create sets of representative configu-
rations of manageable size (i.e., samples) [32]. For purposes
such as combinatorial interaction testing [7, 24, 25], one is
interested in covering as many interactions as possible with
the configurations in the sample. A 𝑡-wise coverage of 100 %
means that every interaction between 𝑡 features is present
in at least one configuration in the sample (i.e., covered).
A number of specialized samplers have been developed

with the goal of achieving high to full 𝑡-wise coverage with
as few configurations as possible [2, 4, 17, 22, 29]. How-
ever, their time requirements [2, 21, 22, 29], yielded sam-
ple sizes [4, 29], or achieved coverages [4, 29] commonly
make them impractical when applied to real-world feature
models [31, 32]. For example, the state-of-the-art sampler
YASA is capable of sampling hard models such as Linux
2.6.28 [34, 36] within 30 minutes [22], achieves 100% 2-
wise coverage, but requires more than 500 configurations to
reach this coverage. For large but underconstrained models,
such as Automotive02, YASA fails to scale, as it, in essence,
needs to iterate over all valid 2-wise interactions and there-
fore takes days [22].

For scenarios such as continuous integration, where time
is at the essence and resources are limited, both a sampling
time of 30 minutes and sample size of 500 configurations are
impractical. In the case of JHipster, an open-source developer
framework for web applications and microservices, there are
only enough resources available to test 12 configurations per
commit [13]. In 2016, more than 36,000 kernels were build per
day for testing the Linux kernel [31], resulting in 25 configu-
rations being tested per commit on average.1 Therefore, we
propose to trade-off coverage for increased sampling speed
and reduced sample size, which in turn lowers the time and
resource requirements for testing.

1https://people.netfilter.org/hawk/presentations/ifdef2016/ifdef_
FOSD2016.pdf

Evaluate papers using 49 real-world feature models + Post Processing

6 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Results
Sampler No post-processing

Size Cov
Yasa (t = 2) 272±744.7 99.98±0.1 %
Baital (t = 2) 484±55.9 99.65±1.5 %
Quicksampler (s = 1024) 781±500.4 51.58±16.3 %
Spur (s = 1024) 982±145.2 88.91±11.7 %

� YASA as clear winner
■ even without post processing
■ Smaller Samples
■ Larger Coverage

� Uniform Sampling: Better than expected

7 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Trade-Off & Problem in Practice

Sample Time
1 Day

Sample Size
16

Coverage ⇒100% 4/5/6-wise needed

99 %
93%

Empir Software Eng (2019) 24:674–717
https://doi.org/10.1007/s10664-018-9635-4

Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack

Axel Halin1 ·Alexandre Nuttinck2 ·Mathieu Acher3 ·
Xavier Devroey4 ·Gilles Perrouin5 ·Benoit Baudry6

Published online: 17 July 2018
© The Author(s) 2018

Abstract Many approaches for testing configurable software systems start from the same
assumption: it is impossible to test all configurations. This motivated the definition of
variability-aware abstractions and sampling techniques to cope with large configuration
spaces. Yet, there is no theoretical barrier that prevents the exhaustive testing of all config-
urations by simply enumerating them if the effort required to do so remains acceptable. Not
only this: we believe there is a lot to be learned by systematically and exhaustively test-
ing a configurable system. In this case study, we report on the first ever endeavour to test

Communicated by: Sven Apel

� Xavier Devroey
x.d.m.devroey@tudelft.nl

Alexandre Nuttinck
alexandre.nuttinck@cetic.be

Mathieu Acher
mathieu.acher@irisa.fr

Gilles Perrouin
gilles.perrouin@unamur.be

Benoit Baudry
baudry@kth.se

1 PReCISE, NaDI, Faculty of Computer Science, University of Namur, Namur, Belgium

2 CETIC, Charleroi, Belgium

3 Inria, CNRS, IRISA, University of Rennes, Rennes, France

4 SERG, Delft University of Technology, Delft, The Netherlands

5 (FNRS research associate) PReCISE, NaDI, Faculty of Computer Science, University of Namur,
Namur, Belgium

6 KTH Royal Institute of Technology, Stockholm, Sweden

A Comparison of 10 Sampling Algorithms for
Configurable Systems

Flávio Medeiros
Fed. Univ. of Campina Grande

Paraíba, Brazil

Christian Kästner
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Márcio Ribeiro
Federal University of Alagoas

Maceió, Alagoas, Brazil

Rohit Gheyi
Fed. Univ. of Campina Grande

Paraíba, Brazil

Sven Apel
Universität Passau
Passau, Germany

ABSTRACT
Almost every software system provides configuration options
to tailor the system to the target platform and application
scenario. Often, this configurability renders the analysis
of every individual system configuration infeasible. To ad-
dress this problem, researchers have proposed a diverse set
of sampling algorithms. We present a comparative study
of 10 state-of-the-art sampling algorithms regarding their
fault-detection capability and size of sample sets. The for-
mer is important to improve software quality and the lat-
ter to reduce the time of analysis. In a nutshell, we found
that sampling algorithms with larger sample sets are able
to detect higher numbers of faults, but simple algorithms
with small sample sets, such as most-enabled-disabled, are
the most efficient in most contexts. Furthermore, we ob-
served that the limiting assumptions made in previous work
influence the number of detected faults, the size of sample
sets, and the ranking of algorithms. Finally, we have iden-
tified a number of technical challenges when trying to avoid
the limiting assumptions, which questions the practicality of
certain sampling algorithms.

1. INTRODUCTION
Many software systems can be configured to different hard-

ware platforms, operating systems, and requirements [48].
However, the variability that is inherent to configurable sys-
tems challenges quality assurance [3, 22, 23, 30]. Developers
need to consider multiple configurations when they execute
tests or perform static analyses to find faults and vulner-
abilities. As the configuration space often explodes expo-
nentially with the number of configuration options, analyz-
ing every individual system configuration becomes infeasible
in real-world projects; for example, the Linux Kernel has
more than 12 thousand compile-time configuration options.
Configuration-related faults that occur only in a subset of all
configurations are especially tricky to find [30]. As such, it
is not surprising that many configuration-related faults have

been found in highly-configurable systems, such as the Linux
Kernel, Gcc, BusyBox, and Apache [1, 14,20,31,32,53].

Although researchers have proposed approaches to ana-
lyze complete configuration spaces in a sound fashion for
some classes of defects [15, 20, 21, 53, 54], the vast majority
of mature quality-assurance techniques consider only a single
configuration at a time. For example, static-analysis tools
operate typically on C code after the C preprocessor has
resolved configuration options implemented through condi-
tional compilation (e.g., using #ifdef directives). To reuse
state-of-the-art tools, such as gcc, for detecting configuration-
related faults, sampling is a viable alternative [18,29,37,39,
50]. That is, instead of analyzing all configurations, one se-
lects a subset of configurations to analyze individually. The
effectiveness of sampling for detecting configuration-related
faults depends significantly on how samples are selected,
though.

Several sampling algorithms have been proposed in the lit-
erature, such as t-wise [18,25,29,39], statement-coverage [51],
and one-disabled [1]. To select a suitable sampling algo-
rithm, one needs to understand the tradeoffs, especially with
regard to effort (i.e., how large are the sample sets) and fault-
detection capabilities (i.e., how many faults can be found in
the sampled configurations). Unfortunately, a comparison of
sampling algorithms for finding configuration-related faults
is not available. More importantly, many proposed sam-
pling algorithms make severe assumptions that may not be
realistic for practical applications and that are not always
clearly communicated. For instance, they perform analy-
ses per file instead of globally, and they ignore constraints
among configuration options, header files, and build-system
information [23, 25, 36, 46]. Applying sampling algorithms
under different assumptions may introduce significant addi-
tional effort or reduce coverage, as we will discuss. A lack of
understanding of the tradeoffs and assumptions of sampling
algorithms can lead to both undetected faults, which de-
crease software quality, and time-consuming code analysis,
which increases costs.

We conducted a comparative study to analyze 10 sampling
algorithms in detail to fill that gap. We compared the se-
lected sample sizes and the fault-detection capabilities of the
sampling algorithms in a study of 135 known configuration-
related faults in 24 open-source C systems, each configurable
with conditional compilation. Specifically, we analyzed a set
of sampling algorithms proposed in the research literature:
5 variations of t-wise [18,29,37,39]; statement-coverage [51];
random; one-disabled [1]; one-enabled ; and most-enabled-

ar
X

iv
:1

60
2.

02
05

2v
3

 [
cs

.S
E

]
 1

6
Fe

b
20

16

8 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Open Questions

Current State
� What is the baseline?

� We evaluated: 93% 2-wise with restrictions → Enough?

The end of Uniform Sampling in Fault Detection?
Is T-Wise the way to go?

9 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Planned Thesis
Configuration: {White, ¬Ham, Cheese, ¬Mushroom, ...}

1 #ifdef Ham

2 int f(int x){...}

3 #endif

4 #ifdef Cheese

5 int g() {

6 return f(42);

7 }

8 #endif

Compile Error

1 void h(int x){

2 cout << (2/x) << endl;

3 }

4 int main() {

5 int x = 1;

6 #ifdef Mushroom

7 x = x + 1;

8 #endif

9 #ifdef Cheese

10 x = x - 1;

11 #endif

12 h(x);

13 }

Runtime Error
Error Masking in SPLs

10 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Planned Thesis

Error Masking in Software Product Lines

Significance
� Error Masking affects all Sampling techniques

� Problem might be bigger than we think

� Looks at the Solution Space

� Apply to real world fault detection

11 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

What do YOU think?
6 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Results
Sampler No post-processing

Size Cov
Yasa (t = 2) 272±744.7 99.98±0.1 %
Baital (t = 2) 484±55.9 99.65±1.5 %
Quicksampler (s = 1024) 781±500.4 51.58±16.3 %
Spur (s = 1024) 982±145.2 88.91±11.7 %

� YASA as clear winner
■ even without post processing
■ Smaller Samples
■ Larger Coverage

� Uniform Sampling: Better than expected

7 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Trade-Off & Problem in Practice

Sample Time
1 Day

Sample Size
16

Coverage ⇒100% 4/5/6-wise needed

99 %
93%

Empir Software Eng (2019) 24:674–717
https://doi.org/10.1007/s10664-018-9635-4

Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack

Axel Halin1 ·Alexandre Nuttinck2 ·Mathieu Acher3 ·
Xavier Devroey4 ·Gilles Perrouin5 ·Benoit Baudry6

Published online: 17 July 2018
© The Author(s) 2018

Abstract Many approaches for testing configurable software systems start from the same
assumption: it is impossible to test all configurations. This motivated the definition of
variability-aware abstractions and sampling techniques to cope with large configuration
spaces. Yet, there is no theoretical barrier that prevents the exhaustive testing of all config-
urations by simply enumerating them if the effort required to do so remains acceptable. Not
only this: we believe there is a lot to be learned by systematically and exhaustively test-
ing a configurable system. In this case study, we report on the first ever endeavour to test

Communicated by: Sven Apel

� Xavier Devroey
x.d.m.devroey@tudelft.nl

Alexandre Nuttinck
alexandre.nuttinck@cetic.be

Mathieu Acher
mathieu.acher@irisa.fr

Gilles Perrouin
gilles.perrouin@unamur.be

Benoit Baudry
baudry@kth.se

1 PReCISE, NaDI, Faculty of Computer Science, University of Namur, Namur, Belgium

2 CETIC, Charleroi, Belgium

3 Inria, CNRS, IRISA, University of Rennes, Rennes, France

4 SERG, Delft University of Technology, Delft, The Netherlands

5 (FNRS research associate) PReCISE, NaDI, Faculty of Computer Science, University of Namur,
Namur, Belgium

6 KTH Royal Institute of Technology, Stockholm, Sweden

A Comparison of 10 Sampling Algorithms for
Configurable Systems

Flávio Medeiros
Fed. Univ. of Campina Grande

Paraíba, Brazil

Christian Kästner
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Márcio Ribeiro
Federal University of Alagoas

Maceió, Alagoas, Brazil

Rohit Gheyi
Fed. Univ. of Campina Grande

Paraíba, Brazil

Sven Apel
Universität Passau
Passau, Germany

ABSTRACT
Almost every software system provides configuration options
to tailor the system to the target platform and application
scenario. Often, this configurability renders the analysis
of every individual system configuration infeasible. To ad-
dress this problem, researchers have proposed a diverse set
of sampling algorithms. We present a comparative study
of 10 state-of-the-art sampling algorithms regarding their
fault-detection capability and size of sample sets. The for-
mer is important to improve software quality and the lat-
ter to reduce the time of analysis. In a nutshell, we found
that sampling algorithms with larger sample sets are able
to detect higher numbers of faults, but simple algorithms
with small sample sets, such as most-enabled-disabled, are
the most efficient in most contexts. Furthermore, we ob-
served that the limiting assumptions made in previous work
influence the number of detected faults, the size of sample
sets, and the ranking of algorithms. Finally, we have iden-
tified a number of technical challenges when trying to avoid
the limiting assumptions, which questions the practicality of
certain sampling algorithms.

1. INTRODUCTION
Many software systems can be configured to different hard-

ware platforms, operating systems, and requirements [48].
However, the variability that is inherent to configurable sys-
tems challenges quality assurance [3, 22, 23, 30]. Developers
need to consider multiple configurations when they execute
tests or perform static analyses to find faults and vulner-
abilities. As the configuration space often explodes expo-
nentially with the number of configuration options, analyz-
ing every individual system configuration becomes infeasible
in real-world projects; for example, the Linux Kernel has
more than 12 thousand compile-time configuration options.
Configuration-related faults that occur only in a subset of all
configurations are especially tricky to find [30]. As such, it
is not surprising that many configuration-related faults have

been found in highly-configurable systems, such as the Linux
Kernel, Gcc, BusyBox, and Apache [1, 14,20,31,32,53].

Although researchers have proposed approaches to ana-
lyze complete configuration spaces in a sound fashion for
some classes of defects [15, 20, 21, 53, 54], the vast majority
of mature quality-assurance techniques consider only a single
configuration at a time. For example, static-analysis tools
operate typically on C code after the C preprocessor has
resolved configuration options implemented through condi-
tional compilation (e.g., using #ifdef directives). To reuse
state-of-the-art tools, such as gcc, for detecting configuration-
related faults, sampling is a viable alternative [18,29,37,39,
50]. That is, instead of analyzing all configurations, one se-
lects a subset of configurations to analyze individually. The
effectiveness of sampling for detecting configuration-related
faults depends significantly on how samples are selected,
though.

Several sampling algorithms have been proposed in the lit-
erature, such as t-wise [18,25,29,39], statement-coverage [51],
and one-disabled [1]. To select a suitable sampling algo-
rithm, one needs to understand the tradeoffs, especially with
regard to effort (i.e., how large are the sample sets) and fault-
detection capabilities (i.e., how many faults can be found in
the sampled configurations). Unfortunately, a comparison of
sampling algorithms for finding configuration-related faults
is not available. More importantly, many proposed sam-
pling algorithms make severe assumptions that may not be
realistic for practical applications and that are not always
clearly communicated. For instance, they perform analy-
ses per file instead of globally, and they ignore constraints
among configuration options, header files, and build-system
information [23, 25, 36, 46]. Applying sampling algorithms
under different assumptions may introduce significant addi-
tional effort or reduce coverage, as we will discuss. A lack of
understanding of the tradeoffs and assumptions of sampling
algorithms can lead to both undetected faults, which de-
crease software quality, and time-consuming code analysis,
which increases costs.

We conducted a comparative study to analyze 10 sampling
algorithms in detail to fill that gap. We compared the se-
lected sample sizes and the fault-detection capabilities of the
sampling algorithms in a study of 135 known configuration-
related faults in 24 open-source C systems, each configurable
with conditional compilation. Specifically, we analyzed a set
of sampling algorithms proposed in the research literature:
5 variations of t-wise [18,29,37,39]; statement-coverage [51];
random; one-disabled [1]; one-enabled ; and most-enabled-

ar
X

iv
:1

60
2.

02
05

2v
3

 [
cs

.S
E

]
 1

6
Fe

b
20

16

8 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Open Questions

Current State
� What is the baseline?

� We evaluated: 93% 2-wise with restrictions → Enough?

The end of Uniform Sampling in Fault Detection?
Is T-Wise the way to go?

10 Heß, Tim Schmidt, Ostheimer, Krieter, Thüm | High T-Wise Coverage From Uniform Sampling | FOSD’24

Planned Thesis

Error Masking in Software Product Lines

Significance
� Error Masking affects all Sampling techniques

� Problem might be bigger than we think

� Looks at the Solution Space

� Apply to real world fault detection

