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Tooling matters!



      

Tooling Matters!

„Defining languages and notations is not enough 

per se – you have to provide good tool support for 

them, too.“ [1] 



      

Tooling Matters!

● What is the supporting (modelling) tool?
● What is a good (modelling) tool?
● Tool conundrum in modelling (see Selic [4]): 

– Produce general-purpose tools that cover the broadest 
possible audience to control for costs/ e*ort? 

– Develop special-purpose, domain-specific tools to boost 
productivity/ acceptance?



      

Tooling Matters!

● Recent trends to address this tradeo* in IDEs: Decoupling IDE 
platform from language-dependent tools/ services.

● Decoupling based on language-tool platforms:
– Language-aware „servers“ (language-specific backend infrastructure)
– Text and diagram editors (language-agnostic frontend infrastructure)
– Reusable language services (e.g., some auto-completion service)

● Language Server Protocol (LSP):
– Complements language workbenches and language-product lines
– In this spirit: Computational notebooks backed by language kernels (but 

there are competing kernel protocols)



      

Tooling Matters!

Ex.: Autocompletion for GPL textual editor 
using LSP (taken from Figure 3 in [3])



      

LSP for UVL ✅



      

Tooling for Modelling Matters!



      

Unboxing FeatureIDE modeling?



      

Eclipse Graphical Language Server 
Protocol (GLSP; 1)

● LSP for graphical modeling 
– Allows for developing browser-based diagram clients;
– Frontend focuses on diagram rendering & modeler interaction;
– Backend and diagram server provides the various language services;

● Integrates with multiple frontend infrastructures (e.g., Chromium, WebViews, Eclipse RCP, Visual 
Studio)

● Di*erent deployment options in the front- and backend (e.g., desktop, cloud, browser-only)
● Integrates with various backend models (custom class models, abstract-syntax models, EMF/ Ecore 

models)
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GLSP (2): Provisioning
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GLSP (3): Mapping (backend)
Ecore/ Java
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GLSP (4): Storage

<?xml version="1.0" encoding="UTF-8"?>

<featureModel>

   <struct>

      <and mandatory="true" name="Base">

         <and mandatory="true" name="new_one1">

            <feature mandatory="true" name="feature1" />

         </and>

         <feature name="new_one2" />

         <and name="new_one4">

            <and name="new_one5">

               <feature mandatory="true" name="XXX" />

               <feature mandatory="true" name="xxx" />

            </and>

         </and>

      </and>

   </struct>

</featureModel>

<?xml version="1.0" encoding="UTF-8"?>

<layout chosenLayoutAlgorithm="0" horizontalLayout="true">

  <struct>

    <feature X="124" Y="7" name="Base" />

    <feature X="58" Y="66" name="new_one1" />

    <feature X="30" Y="152" name="feature1" />

    <feature X="123" Y="132" name="new_one2" />

    <feature X="185" Y="32" name="new_one4" />

    <feature X="196" Y="68" name="new_one5" />

    <feature X="178" Y="170" name="XXX" />

    <feature X="240" Y="144" name="xxx" />

  </struct>

  <constraints />

  <legend />

</layout>

example.notation

example.xml



      

GLSP (5): Diagram and model edits

GLSP ServerGLSP client

source model
(FeatureModel)

actions

actions

 ☑ model operations (edits)

 ☑ palette actions

 ☑ navigation targets

 ➡ more than 80 actions (in default configuration)



      

GLSP (6): FM4 as my MVP

FeatureIDE FM Gmodel/ UI Concrete 
syntax

Abstract 
syntax

Semantics/ services

Feature hierarchy 
(AND)

⬤ ⬤ ⬤ ◒

Feature groups 
(XOR, OR) 

◯ ◯ ◯ ◯

Attributes ◯ ◯ ◯ ◯

Cross-tree 
constraints

◯ ◯ ◯ ◯

Feature order ◯ ◯ ◯ ◯

Autolayouting ◯ ◯ ◯ ◯

Validation ◯ ◯ ◯ ◯

DiIng ◯ ◯ ◯ ◯

... ... ... ... ...

… the fastest way (for me) to run a first „Build-Measure-Learn“ loop



      

GLSP (7): First Lessons Learned

● FeatureIDE Library is eligible as a GLSP provider  ☑
● Possible enhancements:

– Provide for an „essential“ library (e.g., only two formats) and no 
external library dependencies (e.g., uvl-parser.jar)?

– GraphicalFeatureModel
● Make it a member of core?
● Remove dependency on GEF (Point, Dimension)
● Improved separation of concerns:

– Representing graph embedding (e.g., size, location, shape)
– Integrate with GEF/ Eclipse editor’s event loop

– Refactor „godness“ classes: Utility classes with many imports 
(e.g., FeatureUIHelper re: FeatureConnection)



      

 GLSP (8): Standing on shoulders

● Testing support: Unit, integration, and 
end-to-end testing

● Mixed authoring:
– Syntax-driven textual editing
– Form-based editing
– SCM integration

● Collaboration mode: Multi-user
authoring of diagrams by sharing 
model state and command stack

● Improvements to accessibility 
(incl. zooming)

● (Instrumentation for activity tracking)



      

Next steps

● Complete the „base feature“
– Feedback and notification channels to clients
– Notational completeness (feature groups, 

constraints)

● Complete packaging the MVP (yarn 
+ Maven)

● Adding basic (end-to-end) interaction 
tests (playwright)

● Collaborations:
– Plan is to assign work packages to student 

projects (e.g. support for attributed feature 
models);

– Call for contributors in the FOSD/ FIDE 
community �
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