

FeatureIDE feature models outside the (Eclipse) box

Stefan Sobernig, WU Vienna
FOSD 2024 @ TU Eindhoven

Tooling matters!

Tooling Matters!

„Defining languages and notations is not enough

per se – you have to provide good tool support for

them, too.“ [1]

Tooling Matters!

● What is the supporting (modelling) tool?
● What is a good (modelling) tool?
● Tool conundrum in modelling (see Selic [4]):

– Produce general-purpose tools that cover the broadest
possible audience to control for costs/ e*ort?

– Develop special-purpose, domain-specific tools to boost
productivity/ acceptance?

Tooling Matters!

● Recent trends to address this tradeo* in IDEs: Decoupling IDE
platform from language-dependent tools/ services.

● Decoupling based on language-tool platforms:
– Language-aware „servers“ (language-specific backend infrastructure)
– Text and diagram editors (language-agnostic frontend infrastructure)
– Reusable language services (e.g., some auto-completion service)

● Language Server Protocol (LSP):
– Complements language workbenches and language-product lines
– In this spirit: Computational notebooks backed by language kernels (but

there are competing kernel protocols)

Tooling Matters!

Ex.: Autocompletion for GPL textual editor
using LSP (taken from Figure 3 in [3])

LSP for UVL ✅

Tooling for Modelling Matters!

Unboxing FeatureIDE modeling?

Eclipse Graphical Language Server
Protocol (GLSP; 1)

● LSP for graphical modeling
– Allows for developing browser-based diagram clients;
– Frontend focuses on diagram rendering & modeler interaction;
– Backend and diagram server provides the various language services;

● Integrates with multiple frontend infrastructures (e.g., Chromium, WebViews, Eclipse RCP, Visual
Studio)

● Di*erent deployment options in the front- and backend (e.g., desktop, cloud, browser-only)
● Integrates with various backend models (custom class models, abstract-syntax models, EMF/ Ecore

models)

Server frameworksClient frameworks

GLSP
protocol

(JSON-RPC)

Fr
on

te
nd

 p
la

tfo
rm

s

GLSP (2): Provisioning

GLSP ServerGLSP client

n1

n2
c1

n3

l1
i1

graph model
(GModel)

source model
(FeatureModel)

factory

storage

GLSP (3): Mapping (backend)
Ecore/ Java

GLSP GModel

GGraph

{abstract}
GModelElement

GNode GEdge

+children

+parent

0..*

+source

1..1

+target

GPoint
+routingPoints
2..*GDimension

+size +position+position

FeatureIDE GraphicalFeatureModel

GraphicalFeature

GraphicalFeature
Model

Point

org.eclipse.draw2d.geometry+/features

GraphicalConstraint
+/constraints

+location

0..*

0..*+model

Dimension
+size

+location

+size

 Java

FeatureIDE FeatureModel

 Java

Feature

FeatureModel

+features

Constraint
+/constraints

0..*

0..*

+model

+/visibleFeatures
{subsets features}
0..*

FeatureModel
Structure

FeatureStructure

+model

1..1

+structure
1..1

+root
1..1

+parent +structure

1..11..1

0..*
+children

+feature
1..1

GLSP (4): Storage

<?xml version="1.0" encoding="UTF-8"?>

<featureModel>

 <struct>

 <and mandatory="true" name="Base">

 <and mandatory="true" name="new_one1">

 <feature mandatory="true" name="feature1" />

 </and>

 <feature name="new_one2" />

 <and name="new_one4">

 <and name="new_one5">

 <feature mandatory="true" name="XXX" />

 <feature mandatory="true" name="xxx" />

 </and>

 </and>

 </and>

 </struct>

</featureModel>

<?xml version="1.0" encoding="UTF-8"?>

<layout chosenLayoutAlgorithm="0" horizontalLayout="true">

 <struct>

 <feature X="124" Y="7" name="Base" />

 <feature X="58" Y="66" name="new_one1" />

 <feature X="30" Y="152" name="feature1" />

 <feature X="123" Y="132" name="new_one2" />

 <feature X="185" Y="32" name="new_one4" />

 <feature X="196" Y="68" name="new_one5" />

 <feature X="178" Y="170" name="XXX" />

 <feature X="240" Y="144" name="xxx" />

 </struct>

 <constraints />

 <legend />

</layout>

example.notation

example.xml

GLSP (5): Diagram and model edits

GLSP ServerGLSP client

source model
(FeatureModel)

actions

actions

 ☑ model operations (edits)

 ☑ palette actions

 ☑ navigation targets

 ➡ more than 80 actions (in default configuration)

GLSP (6): FM4 as my MVP

FeatureIDE FM Gmodel/ UI Concrete
syntax

Abstract
syntax

Semantics/ services

Feature hierarchy
(AND)

⬤ ⬤ ⬤ ◒

Feature groups
(XOR, OR)

◯ ◯ ◯ ◯

Attributes ◯ ◯ ◯ ◯

Cross-tree
constraints

◯ ◯ ◯ ◯

Feature order ◯ ◯ ◯ ◯

Autolayouting ◯ ◯ ◯ ◯

Validation ◯ ◯ ◯ ◯

DiIng ◯ ◯ ◯ ◯

...

… the fastest way (for me) to run a first „Build-Measure-Learn“ loop

GLSP (7): First Lessons Learned

● FeatureIDE Library is eligible as a GLSP provider ☑
● Possible enhancements:

– Provide for an „essential“ library (e.g., only two formats) and no
external library dependencies (e.g., uvl-parser.jar)?

– GraphicalFeatureModel
● Make it a member of core?
● Remove dependency on GEF (Point, Dimension)
● Improved separation of concerns:

– Representing graph embedding (e.g., size, location, shape)
– Integrate with GEF/ Eclipse editor’s event loop

– Refactor „godness“ classes: Utility classes with many imports
(e.g., FeatureUIHelper re: FeatureConnection)

 GLSP (8): Standing on shoulders

● Testing support: Unit, integration, and
end-to-end testing

● Mixed authoring:
– Syntax-driven textual editing
– Form-based editing
– SCM integration

● Collaboration mode: Multi-user
authoring of diagrams by sharing
model state and command stack

● Improvements to accessibility
(incl. zooming)

● (Instrumentation for activity tracking)

Next steps

● Complete the „base feature“
– Feedback and notification channels to clients
– Notational completeness (feature groups,

constraints)

● Complete packaging the MVP (yarn
+ Maven)

● Adding basic (end-to-end) interaction
tests (playwright)

● Collaborations:
– Plan is to assign work packages to student

projects (e.g. support for attributed feature
models);

– Call for contributors in the FOSD/ FIDE
community �

References

[1] Markus Völter, “MD* Best Practices”, Journal of Object Technology, Volume 8, no.
6 (September 2009), pp. 79-102, doi: 10.5381/jot.2009.8.6.c6.

[2] Dominik Bork, Philip Langer, Tobias Ortmayr: A Vision for Flexible GLSP-Based
Web Modeling Tools. PoEM 2023: 109-124, doi: 10.1007/978-3-031-48583-1_7

[3] Dominik Bork, Philip Langer: Language Server Protocol: An Introduction to the
Protocol, its Use, and Adoption for Web Modeling Tools. Enterp. Model. Inf. Syst.
Archit. Int. J. Concept. Model. 18: 9:1-16 (2023), doi: 10.18417/emisa.18.9

[4] Bran Selic: What will it take? A view on adoption of model-based methods in
practice. Softw. Syst. Model. 11(4): 513-526 (2012)

