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T-Wise Sampling

Goal:

® Representative list of configurations

® [nclude all valid feature combinations
of size t

Usage:

® Testing, analyzing, profiling,
evaluation, ...
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T-Wise Sampling

Goal:
® Representative list of configurations [Tea |
® Include all valid feature combinations @ @
of size t F;Xi | | Seasoning | :> <> :>
Green Tea M Sugar  Honey @
Usage: Chai = Milk
. . - Sampling Sample with
® Testing, analyzing, profiling, Feature Model Algorithm 100% T-Wise Coverage
evaluation, ...
Implementation:

® Typically SAT-based
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Knowledge Compilation with d-DNNFs
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Knowledge Compilation with d-DNNFs

deterministic Decomposable Negation
Normal Form

~Green
Tea
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Knowledge Compilation with d-DNNFs

deterministic Decomposable Negation
Normal Form

® | eaf nodes are literals
® AND children share no variables

® OR children share no valid

assignments ~Green

Tea
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Knowledge Compilation with d-DNNFs

deterministic Decomposable Negation
Normal Form

® | eaf nodes are literals
® AND children share no variables

® OR children share no valid
assignments
= SAT and #SAT can be computed
efficiently

~Green
Tea
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T-Wise Sampling with d-DNNF
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T-Wise Sampling with d-DNNF
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Algorithm 100% T-Wise Coverage
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General ldea

Use bottom-up approach
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General ldea

Use bottom-up approach

1. Create partial samples at leaf nodes
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General ldea

Use bottom-up approach

1. Create partial samples at leaf nodes

2. Merge partial samples at parent nodes

3. Extend partial sample for each parent
node
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General ldea

Use bottom-up approach

1. Create partial samples at leaf nodes

2. Merge partial samples at parent nodes

3. Extend partial sample for each parent
node

4. Repeat 2-3 until root node yields
complete t-wise sample
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Merging Samples at OR Nodes
Merge:

@ @ 1. Build union of samples of children
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Merging Samples at OR Nodes
Merge:

@ @ 1. Build union of samples of children

2. Remove redundant configurations
® Uses greedy approach
® Sort configurations with a
&X l@ heuristic
® Add configurations to union
sample one by one,
ignoring configurations that cover

@ @ no new tuples
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Merging Samples at OR Nodes
Merge:

@ @ 1. Build union of samples of children
2. Remove redundant configurations

® Uses greedy approach
® Sort configurations with a
&X % heuristic
® Add configurations to union
sample one by one,
ignoring configurations that cover

@ @ no new tuples

Possible optimizations:

® Better utilization of OR-node property
possible?

® Use non-local optimization (Consider
nodes higher up in the d-DNNF
graph)?
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Merging Samples at AND Node

Merge:

1. Combine configurations in partial
samples
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Merging Samples at AND Node

Merge:
. . . . . Vars(AND) = {Green Tea, Chai,
1. Combine configurations in partial Sugar, Honey}
samples

Vars(L) = {Green Tea, Chai} Vars(R) = {Sugar, Honey
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Merging Samples at AND Node

Merge:
. . . . . Vars(AND) = {Green Tea, Chai,
1. Combine configurations in partial Sugar, Honey}
samples

Vars(L) = {Green Tea, Chai} Vars(R) = {Sugar, Honey
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Merging Samples at AND Node

Merge:

) @ Vars(AND) = {Green Tea, Chai,

1. Combine configurations in partial @ Sugar, Honey}
samples

Vars(L) = {Green Tea, Chai} Vars(R) = {Sugar, Honey

EoBEY
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Merging Samples at AND Node

Merge:
@ @ Vars(AND) = {Green Tea, Chai,
1. Combine configurations in partial @ Sugar, Honey}
samples
2. Create new configurations for missing
tuples

Vars(L) = {Green Tea, Chai} Vars(R) = {Sugar, Honey

Wise Sampling with
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Merging Samples at AND Node

Merge:
] @ @ Vars(AND) = {Green Tea, Chai,
1. Combine configurations in partial % Sugar, Honey}
samples

2. Create new configurations for missing
tuples

Possible optimizations:

® Better matching strategy?

® Better strategy for finding new tuples?

Vars(L) = {Green Tea, Chai} Vars(R) = {Sugar, Honey

Sebastian Krieter et al. Wise Sampling with



Comparison to SAT-Based Sampling

Sampling with t € {2,3}, comparing Using 47 different FMs, including
® d4 4+ ddnnife ® Automotive0l
® YASA ® Automotive02

® BerkeleyDB

® FinancialServices

® 6 KConfig Sytems
® 3 Models from CDL

® 34 Models from Smarch evaluation
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Comparison to SAT-Based Sampling (Sampling Time)
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Comparison to SAT-Based Sampling (Sample Size)
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Conclusion

T-Wise Sampling with d-DNNF Comparison to SAT-Based Sampling (Sampling Time)
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General Idea Comparison to SAT-Based Sampling (Sample Size)
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